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Abstract—Since the inception of networking technology, net-
work topology design has been a fundamental step for any
interconnected system. This classical problem has diverse forms
due to various design criteria. One special criterion, the ease
of monitoring the network (termed as monitorability of the
network), has recently attracted much attention in the era
of Industry 4.0 when many complex private networks need
to be built for new industrial services. This paper extends a
quantitative measure of network monitorability, k-identifiability,
based on which a new form of network topology design problem
is formulated. We prove that this network design problem is
intractable. To solve it, we systematically analyze the topological
features that are helpful for reducing the complexity of network
construction. Based on the analysis, we propose a dual-heuristic
method that runs two heuristics in parallel and selects the better
topology as the preliminary design result. Moreover, we design an
integrated algorithm that reduces unnecessary edges as the final
design result. We compare our dual-heuristic algorithm with the
theoretical optimal solution in small-scale networks where the
brute-force search is feasible. The results demonstrate the near-
optimality of our method. We also illustrate the capability of our
method in designing large-scale networks.

Index Terms—Network Topology Design, Monitorability, Net-
work Tomography

I. Introduction

Network topology design is a fundamental step for building
any networking system [1], [2]. Topology design is generally
guided by the critical performance criteria of systems to be
built over the network. For instance, in the early stage of
data centers, the main criteria for data center networking
are to support scalability and reconfigurability of data cen-
ters [3]. These requirements triggered tremendous effort on
developing appropriate network topology for data centers, e.g.,
Fat-Tree [4], DCell [5], and DCube [6]. Nevertheless, the
monitorability of networks, a term referring to the ease of
monitoring the network operation, has rarely been considered
as the main criterion in the network design/planning stage.

We argue that the monitorability of networks should be
emphasized more in the early stage of system design. In recent
years, artificial intelligence for IT operations (AIOps) [7], [8]
has become a de-facto technique for large Internet service
providers (ISPs) to automate network monitoring and fend
off service disruptions. Driven by this trend, it becomes more
and more imperative that network operators can easily monitor
operating states of network nodes and quickly identify failures.
Nevertheless, the task of network monitoring is only post-hoc,
i.e., monitoring strategy is developed only after the network
has been deployed and already in operation. This practice may

severely limit the power of AIOps if the underlying network
topology is ill-formed in the beginning (e.g., sparse, large
diameter) and thus does not render easy monitoring (e.g.,
using the collected monitoring information cannot accurately
identify failures). In the era of Industry 4.0, considering the
monitorability of networks in the design stage should be a
norm when people have the chance of developing private
networks to accommodate new industrial services [9].

Generally speaking, directly measuring every network node
incurs prohibitive measurement overhead. Network tomogra-
phy [10] has been proposed to infer the internal status of a
network based on affordable end-to-end measurements. Even
if in-band network telemetry (INT) [11] allows individual
devices to report the statistics in the data plane directly to
monitoring applications running in the centralized control
plane, large-scale INT is still far from reality since it needs
to tackle nontrivial technical challenges such as orchestration,
data aggregation, security, and high monitoring overhead [11].
As such, we follow the network tomography approach that
assumes only partial network nodes could be monitors.

Given a deployed network, the monitorability of net-
works has been quantitatively captured by the concept of k-
identifiable networks [12], which means network operators can
always accurately localize failures if the number of simultane-
ous failures in the network is bounded by k. A k-identifiable
network can greatly simplify network monitoring and failure
localization. Nevertheless, all existing work followed the post-
hoc approach that develops monitoring solutions on a deployed
network. It is worthy noting that all problems [12], [13], [14]
investigated in the post-hoc approach are completely different
from the network topology design problem in this paper, in
that the former focus on developing monitoring methods over
an existing network while the latter aims at building a network
that is easy to monitor. It is still unclear, during the network
design stage, what are the best network topologies (w.r.t. the
monitorability) that we can build within a given budget?

In order to answer the above question, we need to address
three main challenges. First, the question has obviously prac-
tical meaning but does not render direct analysis. To be more
specific, what is the mathematical definition of monitorability?
Can we have different forms of monitorability? How can we
link the budget with network topology? Second, the monitora-
bility of a network clearly depends on appropriate deployment
of monitors [13]. We are faced with the “chicken-and-egg”
problem because the optimal deployment of monitors relies on
the underlying network topology, but we do not know the final



topology yet in the design stage. Third, the network design
problem usually falls in the category of hard combinatorial
optimization problems, and the problem studied in this paper
is no exception. Given the large solution space of network
topology design, how can we discover effective heuristics to
shrink the search space for finding near optimal solutions?

We systematically address the above difficulties. Regarding
the first challenge, we leverage the concept of k-identifiable
in [12] and use weights between distinct nodes to reflect
the construction cost. For the second challenge, we derive a
set of new topological properties of k-identifiable networks,
which set preconditions for the locations of monitors. These
topological properties also provide us with useful information
for designing good heuristics to address the third challenge.
Accordingly, we propose a dual-heuristic method and an in-
tegrated algorithm to solve the network construction problem.
Overall, the paper makes the following contributions:
• Under the framework of Boolean network tomogra-

phy [15], [16], we formally formulate the k-identifiable
network design problem and prove its intractability. We
derive a series of properties of k-identifiable networks
that are easy to implement and can effectively reduce
the solution search space with the number of monitors
bounded in a small range. (Sections III and IV).

• Based on our analytical results, we identify the most use-
ful sufficient conditions for k-identifiable networks, based
on which we can design good heuristics for topology
design. We first propose a dual-heuristic DH consisting of
two heuristics: Void-First and Sorted Weight (SW)-First,
with the former favoring the node-degree requirement and
the latter favoring a smaller total weight (i.e., cost). We
then adopt an integrated algorithm (PCTK), which for
a given network construction instance runs DH in the
beginning and reduces unnecessary edges to obtain the
best topology as the final result. (Section V).

• We validate the efficiency and near optimality of the DH
method. For designing small-scale networks where it is
feasible to find the optimal solution with a brute-force
search (in a constrained search space), the gap between
the optimal solution and that from DH, on average, is
below 7% percent. For designing large-scale networks, we
use major cities across North America as the designated
network locations to showcase the topology with different
monitorability requirements. (Section VI).

II. RelatedWork

Research works can be roughly classified into two groups:
the post-hoc approach and the ex-ante approach. Works in the
former assume that the network has been deployed, while the
works in the latter are in the network design/planning stage
when the actual network has not been built.

A. Post-hoc Approach

Given an existing network, directly monitoring every ele-
ment of the network has been proved infeasible due to the
prohibitive measurement overhead and the so-called silent

failures, i.e., the failures that cannot be automatically detected
and alerted [17]. Pioneered by Duffiel [15], [16], an alternative
method, named Boolean network tomography, is used for
network failure localization. In a nutshell, Boolean network
tomography infers the status (failed or normal) of internal
network nodes/links based on end-to-end path measurement
results. Since its inception, Boolean network tomography has
been serving as the fundamental framework for a series of
research on node/link failure detection.

The early works [15], [16] mainly focus on the minimum set
of nodes that leads to the observed performance of the given
measurement paths. Nevertheless, a shortcoming of this idea
is that such a minimum set of nodes may not be exactly the
set of failed nodes. To better capture the status of each node
(i.e., normal or failed), Ma et al. assumed that the number of
simultaneous multiple failures is bounded by k and proposed
a novel concept called k-identifiability [12]. They gave an
upper bound of the number of k-identifiable nodes if monitors
are known in advance. They also studied the optimal monitor
placement to achieve the maximum number of k-identifiable
nodes [18], [13]. The problem of finding the minimum number
of monitors for link failure detection under a BGP-like routing
policy was studied in [19]. Mukamoto et al. [20] proposed
an adaptive Boolean network tomography scheme, in which
measurement paths are established sequentially according to a
candidate set of failure links.

Different probing mechanisms may pose different con-
straints on the measurement paths. For instance, Ma et
al. [13] studied three different probing mechanism, con-
trollable arbitrary-path probing (CAP) where monitors can
measure arbitrary paths subject to connectivity, controllable
simple-path probing (CSP) where measurement paths must be
cycle-free paths between monitors, and uncontrollable probing
(UP) where measurement paths must follow underlying routing
protocol. Considering that source routing is broadly available,
we in this paper assume the CSP scheme.

B. Ex-ante Approach

Ex-ante approach belongs to the large field of network
topology design [21], [22], [23], [24], which covers diverse
application domains with various design considerations. For
instance, Fencl at al. [21] presented an interactive genetic
algorithm to design network topology that satisfies a given
fault tolerance requirement. In the context of network syn-
chronization, Summers et al. [22] used the network coherence
as the main design goal for network topology, where network
coherence is a measure quantifying variance of states around
the consensus subspace [25]. For data center networks, Akella
at al. [24] proposed using cost universality as the network
design goal for large-scale general-purpose datacenters, where
cost universality refers to the datacenter’s ability of emu-
lating any other network that could be built at the same
cost. Nevertheless, despite the huge volume of papers on
network topology design, very few works have considered the
monitorability as the main network design goal.



TABLE I
Main Notations

Symbol Meaning
M,N Set of monitors/non-monitors, respectively

d(v) Degree of node v

N(v) v’s neighbor set

F Set of failed non-monitors

P Set of measurement paths

PF Incident set of measurement paths w.r.t. F

m Bound of the number of monitors

Fault-tolerant computing [26], [27], [28], another big re-
search field that has a long history, is loosely related to
network monitoring and failure localization. Nevertheless, the
main objective of fault-tolerant computing is to develop and
verify computing systems that can work correctly in the
presence of faults. In most cases, the speciality of the system
under study, e.g., special topology in circuits and computer
architecture, should be considered.

Our work essentially belongs to the ex-ante approach.
Nevertheless, we unify the post-hoc and ex-ante approaches
by solving a more general network construction problem.
Specifically, we assume that we might have an initial network
that was poorly designed and do not meet the monitorability
requirement, and our goal is to introduce new links to improve
the network’s monitorability. Clearly, an initial network with
no links (i.e., the ex-ante approach) is a special case of the
network construction problem. To the best of our knowledge,
there is no previous research on designing easy-to-monitor
networks over the Boolean network tomography framework.

III. Problem Formulation

A. Model and Assumptions

A network is modeled as an undirected weighted graph
G =< V,E,W >, where V is the set of nodes, E is the set of
links, and W is the set of weights between distinct nodes. A
weight reflects the construction cost of building a link between
two distinct nodes. For instance, it may be geographic distance
representing the length of the cable. We assume that all links
are reliable, but each node may be either normal or failed.
Our goal is to identify the failed nodes.

Following the main notations listed in Table I, we introduce
the following basic assumptions and terminologies in the field
of network monitoring.
• Monitors: a special type of nodes in G that have self-

checking mechanisms (e.g., failures can be reported
automatically and get fixed as soon as possible) and
monitoring capabilities (e.g., initiating and collecting
measurements). Apparently, the states of monitors are
always clear. The set of monitors is denoted by M ⊂ V.

• Measurement path: a non-loop path that only contains
two distinct monitors at its end nodes.

• Non-monitors: nodes in G that are not monitors. We
denote the set of non-monitors by N = V\M. The states
of non-monitors (i.e., normal or failed) are unknown and

Fig. 1. An example of 1-identifiable nodes/network.

need to be determined from the results of measurement
paths.

• Measured state: the result of a measurement path. The
state of a measurement path is normal if and only if all
traversed nodes are normal, and is failed if at least one
node on the path fails.

• Failure set: the set of simultaneously failed nodes in G.
We denote the failure set by F(⊆ N).

• Incident set: we say that a measurement path p ∈ P is
affected by the failure set F if p includes at least one
node in F. We use PF , called the incident set of P w.r.t.
F, to denote all paths in P that are affected by F.

Intuitively, if we assume that all non-monitor nodes could
fail simultaneously, no monitoring solution can infer the states
of these nodes in a general network, because no information
is available except that all measurement paths fail. Due to
this reason, when we quantify the topological feature from the
network monitoring perspective, we need to constrain the net-
work by limiting the maximum number of simultaneous node
failures. We borrow (with slight modification) the concept of
k-identifiability in [12] for this purpose.

Definition 1. In a network G, a failed node vi ∈ V is called
k-identifiable when there exists a set of measurement paths P
such that for any failure sets F1 and F2, where F1 ∩ {vi} ,
F2 ∩ {vi} and |F j| ≤ k ( j ∈ {1, 2}), the incident sets PF1 and
PF2 are different.

In other words, a node vi is k-identifiable if and only if
the state of vi could be uniquely determined when there are
at most k simultaneous non-monitor failures in the network
G. For example, the network in Fig. 1 contains two monitors
{m1,m2} and four non-monitors {v1, v2, v3, v4}. There are three
available measurement paths p1, p2, and p3. Since each non-
monitor in Fig. 1 has a unique incident set of measurement
paths, we can uniquely localize any node failure if we assume
that at most one non-monitor node can fail at a time in the
network, i.e., every non-monitor node is 1-identifiable.

Definition 2. For a network G, we say G is k-identifiable when
every non-monitor node in G is k-identifiable.

B. Progressive Construction and Goal

The progressive k-identifiable network construction
problem: Assume that we are given a network G =<
V,E,W >, an integer bound of simultaneous failures k,
and an integer bound of the number of monitors m. Assume
that the monitors can be deployed anywhere on V. Our goal



is to deploy a new set of links E′ to construct a network
G′ =< V,E

⋃
E′,W > such that G′ is k-identifiable with the

minimum total weight of E′.

IV. Properties of k-identifiablity Pertinent to Progressive
Topology Construction

A. The Hardness

A network possibly has
∑k

i=1

(
|V|

i

)
different failure sets, so

brute-force search for the optimal k-identifiable network is
infeasible when |V| is large. We prove that the progressive
k-identifiable network construction problem is NP-complete.

Theorem 1. The progressive k-identifiable network construc-
tion problem is NP-complete.

Proof. We only need to prove a special case of our problem is
NP-complete, where the network is empty (i.e. only nodes are
given without any link). Assume that we are given parameters
V,W, k and m = 2, i.e., only two monitors. Since there are
only two monitors, a necessary condition for k-identifiable
network is that the constructed network must be connected.
Otherwise, each connected sub-network has to be monitored
separately and each connected sub-networks needs at least two
monitors in order to build measurement paths. This is just a
necessary condition, implying that the k-identifiable network
design problem is at least as hard as the problem of building a
connected network with the minimum total weight. Building a
connected network with the minimum total weight is equiva-
lent to finding the minimum spanning tree in a complete graph
consisting of node set N and link weightsW. This is because
if the topology is not a tree, then at least there are two distinct
nodes that have two different measurement paths, p1 and p2,
between them in the constructed network. Then there must be
a link l ∈ P1 but l < P2, and removing l from the network
leads to a connected network that has a smaller total weight.
It has been proved that finding the minimum spanning tree in
a complete graph is NP-complete [29]. �

Since it is hard to solve the progressive k-identifiable net-
work construction problem, we shift our focus to developing
effective heuristic solutions based on theoretical conditions
that guarantees k-identifiability. For this, we first need to break
the chicken-and-egg loop: k-identifiability partly depends on
the locations of monitors but the optimal (i.e., minimum
number of monitors) deployment of monitors can only be
determined after the network topology is known [13].

B. Breaking the Chicken-and-Egg Loop

Our idea to break this logical loop is to derive the topologi-
cal properties of k-identifiable networks that set preconditions
for the possible locations of monitors.

Many properties on k-identifiable networks have been
proved in previous works [12], [18], [13], but not all are
helpful for the purpose of the progressive k-identifiable
network construction. For example, it has been proved [12]
that G is k-identifiable if any node set V′ (|V′| ≤ k + 1) in G
contains at most one monitor and each connected component

in G −V′ (i.e., the subgraph consisting of nodes in V −V′)
contains a monitor. Based on this theorem, we can translate
the problem of building k-identifiable networks (with two
monitors) to building a (k + 2)-vertex-connected graph (proof
omitted due to space limit and due to its less relevance of our
solution proposed later). While this property is interesting, the
algorithm for building a (k+2)-vertex-connected network may
lead to a high total weight.

Therefore, we need to find new properties of k-identifiable
networks that are helpful for easy construction and small
costs both on total weight and number of monitors. Our
investigation shows that the most suitable angle to discover
the new topological properties is node degree. As such, we in
the following analyze two exclusive cases.

Proofs in the rest of the paper are moved to Appendix.

C. Properties under Different Node Degrees

1) When d(vi) ≤ k: first we consider the case where each
non-monitor node has at most k neighbors.

Theorem 2. Assume that the node degree of a non-monitor
node vi is no larger than k, i.e., d(vi) ≤ k. vi is k-identifiable
if and only if the set of its neighbors includes at least two
monitors.

Theorem 2, however, might not be very useful for topology
construction because it only implies the that any node with
degree less than k cannot be k-identifiable unless it has
monitors as its neighbor.

2) When d(vi) > k: we have the following theorems:

Theorem 3. Assume that the node degree of a non-monitor
node vi is larger than k, i.e., d(vi) ≥ k + 1, G is k-identifiable
if for each (non-monitor) node vi, it satisfies any of following
conditions:

(i) Condition 1: d(vi) ≥ k + 2;
(ii) Condition 2: (otherwise, d(vi) = k + 1) for each v j ∈

N(vi), there exists at least one node vl such that vl ∈

N(v j) and vl < N(vi).
In addition, the worst-case upper bound on the number of
monitors m is max{2, d 2|V|

k+2 e}.

Remark 1. The number of monitors m = max{2, d 2|V|
k+2 e} is

the worst-case upper bound. As we can see in the numerical
evaluation in Section VI, the actual number of needed monitors
is much smaller.

The above theorem gives the sufficient conditions for a node
to be k-identifiable when its degree is larger than k, based on
which we can develop an algorithm for the construction. The
difference between the two conditions in Theorem 3 lies in
that Condition 1 requires more degree but less monitors while
Condition 2 could achieve lower degree on nodes with more
monitors, such statement is justified by the following Theorem.

Theorem 4. For a network G to achieve k-identifiable, the
more nodes vi that satisfies Condition 1 rather than Condition
2 in Theorem 3, the less monitors are needed.



Remark 2. Recall that for our construction goal, the number
of monitors should be bounded by m. To build a k-identifiable
network, if we consider satisfying Condition 2 directly (less
node degree requirement translates to a smaller total number
of link, thus less total link weight), the number of monitors
will increase dramatically (as indicated by Theorem 4) to
surpass m. Therefore, in the construction process, we prioritize
in satisfying Condition 1 for every node. Afterwards, we
delete a set of links with highest total weight as long as the
consequently required number of monitors is bounded by m.

V. Constructing k-identifiable Networks

A. Special Case: Building A Network From Scratch

To better understand our strategy in progressively construct-
ing a k-identifiable network, we first focus on the special case
of building a k-identifiable network from scratch, i.e., no link
exists among a given set of nodes. For this, we need to meet
three requirements by selecting a set of links E such that:

1) E comprise a network that is k-identifiable,
2) the total weight of E is as small as possible,
3) the number of needed monitors is within a bound.

Based on the analysis in Section IV, we note that The-
orem 3 provides helpful knowledge for topology design. It
not only gives the sufficient conditions for a network to be
k-identifiable, but also tells us the bounds on the maximum
number of required monitors. However, it is not easy to use
Theorem 3 for topology design, because for an empty network
it is difficult to determine each node’s neighbors before the
network construction is finished. Hence, we leverage the first
condition in Theorem 3 and translate the design goal to
selecting a set of links E such that:

1) any node’s degree in G =< V,E > is no smaller than
k + 2 (degree requirement),

2) the total weight of E is as small as possible (smallest
total weight requirement).

Remark 3. Since we initially do not know which node will
be selected as monitor, we request any node’s degree to be
no smaller than k + 2. In addition, we only use Theorem 3
as a rough estimation on the maximum number of required
monitors. The actual number of monitors will be derived by the
method in [13] after network topology has been constructed.

The NP-hardness of the constructing k-identifiable problem
prevents us from finding a polynomial algorithm to get the
theoretical optimal solution (TOS). The degree requirement
determines that the number of total edges must be at least
higher than some number (details disclosed later in this
section). The candidate solutions that satisfy the degree re-
quirement may have different total weights. If we find the
TOS with brute-force search, for a network with n nodes, the
size of the search space will be

∑n(n−1)/2−1
t=dn(k+2)/2e

(
n(n−1)/2

t

)
(i.e., the

total number of possible edge combinations). Clearly, we need
to find a way to reduce the search space. For this purpose, we
introduce the following concept and theorem.

Definition 3 (Redundant Edge). In a graph, a redundant edge
(re) for the k + 2 degree requirement is an edge whose two
end nodes’ degrees are both greater or equal to k + 2 after
the removal of re.

It is obvious that the existence of any redundant edge
will add unnecessary link weight to the total weight; hence,
towards the goal of constructing a k-identifiable network while
minimizing the total weight, the objective network has to
satisfy the following construction criteria:
(a) each node’s degree is equal or greater than k + 2,
(b) there is no redundant edge for the k+2 degree requirement.

Theorem 5. For n nodes, to build a network satisfying the
construction criteria, the exact number of candidate edges for
the Theoretical Optimal Solution is dn(k + 2)/2e.

Proof. The proof is divided into 2 parts (necessity and suf-
ficiency): in the necessary part, we prove that in order to
satisfy the construction criteria (a), the number of edges has
to be at least dn(k + 2)/2e. In the sufficient part, we prove
that the number of edges cannot exceed dn(k + 2)/2e to
satisfy the construction criteria (b). Therefore, the number
of edge satisfying the construction criteria has to be exactly
dn(k + 2)/2e.

Necessity: The construction criteria (a) requires that each
node’s degree is at least k + 2. Focusing on meeting criteria
(a) only, we do not need to care the weight of edges. As such,
we can use the follow process to obtain the minimum number
of edges satisfying (a): for each node u, adding an arbitrary
edge that is incident to u until it has k + 2 neighbors. This
process, no matter which node order it follows, will result in
the total number of edges listed in Table II, that is, the number
of edge is dn(k + 2)/2e.

TABLE II
The Total Number of Required Edges

Parity of n and k (1 ≤ k ≤ n − 3) number of edges needed

n is odd, k is odd (n(k + 2) + 1)/2
n is odd, k is even n(k + 2)/2
n is even, k is odd n(k + 2)/2
n is even, k is even n(k + 2)/2

Sufficiency: Once the construction criteria (a) is satisfied, as
described in the necessary part, every node will have at least
k + 2 neighbors. To be more specific, for the case where n is
odd and k is odd, n−1 nodes will have exactly k+2 neighbors
and only 1 node will have k + 3 neighbors, and for other 3
cases listed in Table II, all the n nodes will have exactly k + 2
neighbors. Obviously, if we add any new link, no matter which
end nodes it has, it will become a redundant edge. �

While Theorem 5 greatly reduces the search space for the
TOS from

∑n(n−1)/2−1
t=dn(k+2)/2e

(
n(n−1)/2

t

)
to

(
n(n−1)/2
dn(k+2)/2e

)
, the complexity

of searching in a space size
(

n(n−1)/2
dn(k+2)/2e

)
is still too high. When

n becomes big, we cannot find the TOS in reasonable time.
Therefore, we design heuristic methods. Imagine that we
select edges step by step. From the beginning, there are n
nodes without edges, thus each node’s degree is 0. Our goal
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Fig. 2. Performance comparison between DH and TOS in designing small networks.

is to select a proper number of edges to meet the k + 2
degree requirement while keeping the total weight as small
as possible. In this process, if we treat each node’s degree as
an initially empty box and each edge’s end nodes as balls,
then selecting one edge is equivalent to throwing two balls
into two boxes. Once all the boxes are filled with k + 2
balls, the degree requirement is satisfied. Therefore, a heuristic
comes from the following observation: No matter which edge
is selected, it equivalently provides two balls to fill the boxes
(no advantage exists for quickly achieve degree requirement);
however, different edges may contribute different weights to
the final total weight. Naturally, an edge with a smaller weight
should be favored. Based on this observation, we propose two
heuristics:

• Void-First: in the edge selection process, any node whose
degree is smaller than k + 2 is considered as a void that
needs to be filled. The n nodes are firstly arranged in
order by their incident edges’ weights, then are filled
one by one. In other words, this heuristic focuses on
satisfying the degree requirement, following the arranged
node order.

• Sorted weight (SW)-First: firstly sort all the (potential)
edges by their weights in increasing order. At each step,
take the first remained edge (i.e., edge that has not
been selected) witmh the smallest weight, if it is not
a redundant edge for the current topology, put it to
the solution set. Once the degree requirement is met,
terminate.

For building a k-identifiable network from scratch, we
propose a dual heuristic (DH) method that runs Void-First
and SW-First in parallel and selects the network that has the
smaller total weight as the final result. The time complexity
of Void-First and the worst-case time complexity of SW-First

are O(n2log(n)) and O(n4), respectively, where n is the total
number of input nodes. Hence the worst-case time complexity
of DH is O(n4).

The main purpose of this section is to illustrate how we
can build a k-identifiability network from scratch using the
DH method. Since DH ignores the bound on the number
of monitors m and assumes the worst-case upper bound of
required monitors, we may have the room to further trim
down the network if we are given a high value of m, which
is introduced in the next section.

B. Progressively Constructing A K-identifiable Network

The DH algorithm for building a k-identifiable network
from scratch lays a good foundation for us to develop an ef-
fective algorithm for progressively constructing a k-identifiable
network from an initially ill-formed network. Formally, given
an initial network G =< V,E >, we are expected to construct
a new set of links E′ (i.e., E′ ∩ E = ∅) such that:

1) the new network G′ =< V,E ∪ E′ > is k-identifiable;
2) the total weight of E′ is as small as possible;
3) the number of needed monitors is within a bound.
Our main idea for progressively constructing a k-identifiable

network is to leverage the topological information of existing
network and apply the DH algorithm to make every node’s
degree reach at least k +2 first, then place monitors in the net-
work using existing methods. Since [13] has already developed
methods for deploying monitors, we borrowed the MNMP
algorithm in [13] for monitor deployment. After the locations
of monitors are determined, there may be unnecessary links
(criteria defined below), which need to be removed.

We follow Theorem 3 to decide the criteria for unnecessary
links. Specifically, a link l is an unnecessary link if the network
meets the following conditions after removing l:



1) any node’s degree in G′ =< V,E ∪ E′ > is no smaller
than k + 1,

2) any node whose degree is k+1 needs to satisfy Condition
2 in Theorem 3;

3) the total weight of E′ is as small as possible.
Based on the above analysis, we propose our progressive

construction of k-identifiable networks (PCTK) algorithm.
The time complexity of DH is O(n4). The time complexity

of MNMP is O(|E ∪ E′| · n3) [13], where |E ∪ E′| is the total
number of original and newly-added edges. Hence, the worst-
case time complexity of PCTK is O(k2 · n5), where n is the
number of nodes in the network.

Algorithm 1: Progressive Construction To K-
identifiable (PCTK)

input : G, k, m
output: k-identifiable network G′ or “need to increase

monitor bound m”
1 run the DH algorithm over the original network G to

generate a k-identifiable network G′ =< V,E ∪ E′ >,
where E′ is the set of newly-added links;

2 run MNMP [13] on G′ to get the number of monitors
m∗ needed for G′;

3 if m∗ > m then
4 return print (“need to increase monitor bound

m”);
5 end
6 order the edges in E′ in the descending order of

weight;
7 numO f Removed = 0;
8 for each edge e in E′ do
9 if e is an unnecessary link then

10 remove e from E′;
11 numO f Removed = numO f Removed + 1;
12 end
13 if numO f Removed = d(m − m∗)/2e then
14 run MNMP[13] on G′ to update the number of

monitors m∗
15 end
16 if m∗ == m then
17 break
18 end
19 end
20 return G′;

VI. Evaluation

In this section, we evaluate the performance of DH. Since
there is no existing work on designing k-identifiable networks,
we only compare DH with the Theoretical Optimal Solution
(TOS) in small-scale networks where finding TOS is feasible.
For large-scale networks, we visualize two example networks
designed with DH. After a network is constructed with DH
or TOS, we follow the idea from [18] and [13] to find the
number of monitors and their locations.

A. Near optimality of DH in Small Networks

To our best knowledge, this is the first work addresses the
k-identifiable network design problem, so there is no existing
methods that can be adopted to compare with DH. Therefore,
we show the performance of DH with that of TOS on small-
scale construction task (the amount of network nodes is small).
TOS is found by brute-force search using Theorem 5, which
reduces the original search space. Note that, even the reduced
search space has the time complexity O(

(
n(n−1)/2
dn(k+2)/2e

)
), where n

is to total number of nodes, so finding TOS is only feasible
for small-scale networks.

We have evaluated 6 design tasks for small-scale networks
with different total numbers of nodes and different k values.
The parameters for the 6 tasks are listed in Table III. For each
input (n, k), we compare TOS and DH in 100 rounds. At each
round, the weights of links are integers randomly generated in
range [1, 100]. For each round, we compute the total weight
of the constructed network by TOS and the total weight of
the constructed network by DH, respectively. We also use a
metric Gap Ratio, calculated by TotalWeight[DH]−TotalWeight[TOS ]

TotalWeight[TOS ] ,
to quantify the difference between DH and TOS in each round.

TABLE III
Parameters of Small-scale Construction Task

Task No. n k Random Weights

(1) 5 1 integer in [1, 100]
(2) 5 2 integer in [1, 100]
(3) 6 1 integer in [1, 100]
(4) 6 2 integer in [1, 100]
(5) 7 1 integer in [1, 100]
(6) 7 2 integer in [1, 100]

The evaluation results are listed in Table. IV. The average
Gap Ratio is under 7% for all the tests. Moreover, DH behaves
exactly as TOS in task (2). This is because this particular input
(n, k) = (5, 2) (1 ≤ k ≤ n−3) meets the upper limit for k = n−3.
Consequently, the constructed k-identifiable network must be
a complete graph, and DH and TOS return the same topology.
To save space, we only show the detailed evaluation results
of three design tasks (i.e., Tasks 1, 3, 6) in Fig. 2. It is worth
noting that all the above-constructed networks only need two
monitors, which is smaller than the bound given by Theorem 3.

TABLE IV
DH Performance Gap to TOS (TW: total weight)

Task No. Max Gap Ratio Ave Gap Ratio Counts of Equal TW

(1) 0.252 0.039 57 (out of 100)
(2) 0.0 0.0 100 (out of 100)
(3) 0.221 0.057 35 (out of 100)
(4) 0.266 0.040 47 (out of 100)
(5) 0.327 0.069 25 (out of 100)
(6) 0.186 0.050 23 (out of 100)

B. DH for Large Network Design

To demonstrate the constructed topology by DH on a large
scale, we extract 91 Points of Presence (PoP) (including
the longitude and latitude of the PoP locations) from the
Internet Topology Zoo [30]. These PoP nodes are mainly
located in major cities across North America. With these
nodes’ coordinates, the Euclidean distance between every pair



(a) k = 1 (b) k = 2

Fig. 3. Topology of k-identifiable network that covers 91 cities in North America. (a) Assuming that we need to build the network from scratch, we use
DH to construct 1-identifiable network (the total number of links= 142, the number of monitors= 8). (b) Assuming that the topology of (a) is given, we use
PCTK to construct the 2-identifiable network (the number of new links = 45, the number of monitors=10).

of nodes (u, v) is treated as the weight of the potential link.
By feeding DH with these inputs, we finish two topology
designs with k = 1 and k = 2, whose results are displayed
in Fig. 3. DH is implemented with Python 3.7 and executed
on a laptop (Quad-Core Intel Core i7, 1.7 GHz, MEM: 8 GB,
macOS Catalina Version 10.15.7). For the network design task
at this scale, the running times of constructing 1-identifiable
and 2-identifiable networks are 0.12 seconds and 0.11 seconds,
respectively, indicating that DH can be used to design large
networks efficiently and effectively. Note that the constructed
1-identifiable network only needs 8 monitors and the con-
structed 2-identifiable network only needs 7 monitors, which
are significantly smaller than the bound given by Theorem 3.

C. PCTK for Large Network Construction

To approach the optimal solution of progressive k-
identifiable network construction, two main constraints must
be followed: a) the number of monitors are within an expected
bound; b) the total weight of newly-added links should be as
small as possible. Between the two limitations, the former one
is on the top of the list of considerations in our problem. As
we have mentioned in Remark 2, the number of monitors that
we are expected to use reaches minimum when each node in
the network satisfies Condition 1 in Theorem 3. To check it,
in Fig. 3(a), we make each node satisfying Condition 1 and
the expected number of monitors is 7. However, following the
idea that each node only needs to hold Condition 2, almost
60 monitors are deployed in the network, which we do not
expect to see. The result is not shown in our paper since this
method is not suitable for our problem.

Consider the case where the bound m is the minimum
number of monitors that make the network k-identifiable (i.e.,
the degree of each node is at least k + 2), we only need to run
DH (the first step of PCTK), which is already evaluated in the
former part. Then if there are still available monitors, the rest
steps will be put into effect. To show the topology constructed
by PCTK more intuitively, we use the result of Fig. 3(a) as a
given network topology. Then we let k = 2 and m = 10. The

new topology constructed by PCTK is shown in Fig. 3(b). As
we can see seen, under the bound of 10 monitors, 45 edges
are newly added (marked by blue lines). It is worth noting that
if we remove one of new edges randomly and re-run MNMP,
the expected number of monitors will exceed 10.

VII. Conclusion and FutureWork

Designing a network topology that facilitates network and
service management is critical for any networked system. As
networks become more and more complex nowadays, trou-
bleshooting network problems becomes more and more labour
intensive. Accordingly, the monitorability of networks should
be one of the core design principles for network planning.
This paper initiated such a study under the framework of
Boolean network tomography. By formulating, analyzing, and
solving the k-identifiable network design problem, this paper
is a crucial step towards building easy-to-monitor networks.

Our proposed DH solution is the first attempt at designing
k-identifiable networks, and it is not perfect in various ways.
While DH empirically shows good performance, it does not
have a theoretical guarantee on the approximation ratio. In
addition, it cannot directly answer some closely related design
questions, e.g., can a k-identifiable network be built if we put
constraints on the locations of monitors within a given area
and the physical links within a subset of all possible links?
Answering all these questions is nontrivial and is left as our
future endeavour.
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Appendix
For ease of explanation, we use → to denote direct neigh-

bour on a path. This notation does not mean that the mea-
surement paths are unidirectional. All links are bidirectional
in our study.

A. Proof of Theorem 2

Proof. Denote d(vi) = d and N(vi) = {v1, v2, . . . , vd} (d ≤ k),
where N(vi) is the set of its neighbors.

Sufficiency: Support that N(vi) includes two distinct moni-
tors va and vb (a , b, a, b ∈ {1, . . . , d}). Then there exists one
measurement path pi = va → vi → vb. For any two failure set
F1 and F2, where vi ∈ F1, vi < F2, and |F j| ≤ k ( j ∈ {1, 2}),
we denote the incident measurement path sets by PF1 and PF2 ,
respectively. Then PF1 contains pi while PF2 does not contain
pi. According to Definition 1, vi is k-identifiable.

Necessity: Support that vi is k-identifiable. There exist three
cases as follows.

Case 1 (If N(vi) includes no monitors): we fix two failure
sets F1 = {vi, v1, v2, . . . , vd−1} and F2 = {v1, v2, . . . , vd−1}, i.e., vi

is contained in F1 but not in F2. Obviously, |F j| ≤ k, j ∈ {1, 2}
since |F1| = d, |F2| = d − 1. Then we have PF1 = PF2 ∪ P{vi}.
However, for any measurement path pi that includes vi, pi

can be represented by pi = · · · → va → vi → vb . . . , where
va, vb ∈ N(vi). This means, F2 = N(vi) − {vd} will contain
either va or vb. That is, pi ∈ PF2 . Since pi is an arbitrary
measurement path passing vi, P{vi} ⊆ PF2 . Thus, PF1 = PF2 ,
which is a contradiction to k-identifiability.

Case 2 (If N(vi) includes only one monitor): without loss
of generality, we denote the monitor by vd. Select two failure
sets F1 = {vi, v1, v2, . . . , vd−1} and F2 = {v1, v2, . . . , vd−1}. We
have a contradiction using the same argument as in Case 1.

Case 3 (If N(vi) includes at least two monitors): According
to Sufficiency, if vi has two monitors as neighbors, then vi is
k-identifiable.

Necessity is proved since Case 3 is the only possible case
that k-identifiability holds. �



B. Proof of Theorem 3

Proof. For convenience, we use the symbol α to denote the
percentage of monitors.

Given a network G where each node in V satisfies Theo-
rem 3, based on Definitions 1 and 2, the network G is k-
identifiable if for any failure set F (|F| ≤ k), F satisfies either
of the conditions above:

i) each node vi ∈ V − F is passed by at least one measure-
ment path pi that does not contain any node in F;

ii) |F| = k and each node failure in F can be localized in a
sub-network of G.

First, we prove that there exists a plan for monitor placement
such that for any non-monitor node vi and any vi’s non-monitor
neighbor v j, it holds: (a) N(vi) and N(v j) contain at least one
monitor mi and m j, respectively, (b) mi , m j. To see why,
for any failure set F, N(vi) contains at least one node va that
does not belong to F, because each node vi has at least k + 1
neighbors. Assume that va is a monitor. If N(va) also contains
another monitor. Then we can remove the monitor from va to
vi and check the rest nodes.

After the monitor placement, G is k-identifiable for the
following reasons:
• for any failure set F and one non-monitor node vi ∈ V−F,

if there exists one of vi’s neighbors v j such that v j < F,
then vi is passed by one measurement path pi = mi →

vi → v j → m j, where mi/m j is a monitor included in
N(vi)/N(v j) (mi , m j), respectively.

• if such v j does not exist, then we can localize the node
failure set F = N(vi).

Then, to prove Theorem 3, we only need to design a plan of
monitor placement satisfying conditions (a) and (b) above and
meeting the requirement that the percentage of monitors α is
no larger than 2

k+2 . The monitor placement plan is as follows.
Initially, we set an empty node set V′ = ∅.

Step 1: Select any node vi ∈ V − V
′. Let vi be a monitor.

Then each node in N(vi) has one monitor as its neighbor.
Step 2: Let G−V′ denote a subgraph of G by removing nodes
in V′ from G. If G − V′ is a complete graph, we randomly
select one neighbor of vi as another monitor. Then we have
α ≤ 2

k+2 . Update V′ ← V′ ∪ (G − V′). If G − V′ is not a
complete graph and there exists at least one neighbor v j ∈

N(vi) such that N(v j) − {vi} ⊂ N(vi), we change the monitor
placement from vi to v j. For convenience, we use symbol va

to denote the latest monitor (vi or v j).
Step 3: For va, if there exists at least one node that is not va’s
neighbor, there are three cases as follows:
• Case 1 (If there exists only one node vb that N(vb) ⊆
N(va)): We let vb be a monitor. Then for N(va) + {va, vb},
α ≤ 2

k+3 . Update V′ ←V′ ∪ N(va) ∪ {va, vb}.
• Case 2 (If there exist at least two nodes vl (l ∈ {1, 2, . . . })

that N(vl) ⊆ N(va)): We denote such two nodes by v1
and v2.

– Case 2.1 If the set of neighbors N(va) satisfies
that |N(va)| ≤ 2k + 1, then there exists one node
vc that is a common neighbor of nodes va, v1 and

v2 simultaneously. Let vc become a monitor. Then
for N(va) + {va, v1, v2}, α ≤ 2

k+4 . Update V′ ←
V′ ∪ N(va) ∪ {va, v1, v2}.

– Case 2.2 If the set of neighbors N(va) satisfies that
N(va) ≥ 2k + 2. Follow Case 2.1 if v1 and v2 have a
common neighbor. Otherwise, we select v1 and v2 as
monitors. For N(va) + {va, v1, v2}, α ≤ 3

2k+5 . Update
V′ ←V′ ∪ N(va) ∪ {va, v1, v2}.

• Case 3 Otherwise, update V′ ←V′ ∪ N(va) ∪ {va}.
Step 4: Exclude all nodes that have been covered by any one
of the above cases. Iterate Steps 1-3 for the remaining nodes
in G until no node is left, i.e., until V′ = V. �

Note that the above monitor placement plan is only for de-
riving the worst-case upper bound on the number of monitors
in Theorem 3. In practice, we actually do not need so many
monitors as demonstrated in Section VI.

C. Proof of Theorem 4
Proof. According to Definition 1, any non-monitor node vi

is k-identifiable if and only if for any two node failure sets
F1 and F2 (vi ∈ F1, vi < F2, |F1| ≤ k, |F2| ≤ k), there always
exists one measurement path pi containing at least one node
in F1/F2 but none node in F2/F1. Then, we give analysis of
two cases, respectively:
Case 1: for any non-monitor node vi that satisfies Condition
1 (i.e., d(vi) ≥ k + 2), we denote the set of vi’s neighbors
as N(vi) = {v1, v2, . . . , vk+2}. For any possible node failure
set F that does not contain vi (even F ⊂ N(vi)), N(vi) still
contains at least two normal nodes. Without loss of generality,
we assume v1 and v2 are normal. Then we have a normal path
segment v1 → vi → v2, which means nodes whose degree not
smaller than k+2 does not require any monitor as its neighbor.
Case 2: for any non-monitor node vi that satisfies Condition
2 (i.e., d(vi) = k + 1):
• if vi’s neighbors contains no monitor. We denote the set

of vi’s neighbors as N(vi) = {v1, v2, . . . , vk+1}. Consider
a scenario where there exist only two nodes va and
vb such that va ∈ N(v1), vb ∈ N(v2), va, vb < N(vi).
Support two node failure sets F1 = {vi, v3, . . . , vk+1} and
F2 = {v2, v3, . . . , vk+1}. All paths, which pass vi (or v2)
but none node in {v3, . . . , vk+1}, must contains the path
segment va → v1 → vi → v2 → vb. This contradicts the
concept of k-identifiability.

• if vi’s neighbors contains only one monitor. We con-
sider another scenario where for each neighbor v j ( j ∈
{1, 2, . . . , k + 1}), there exists only one node vl such that
vl ∈ N(v j), vl < N(vi). The proof is the same as the former
scenario.

• if vi’s neighbors contains at least two monitors. Only in
this way, vi always satisfies k-identifiability under any
network topology.

Note that both counterexamples mentioned in Case 2 are
networks with specific topologies and it does not imply that
nodes that satisfies Condition 2 must require at least two
monitors as neighbors. �


