
1

Fast Model Update for IoT Traffic Anomaly
Detection with Machine Unlearning

Jiamin Fan∗, Kui Wu∗, Yang Zhou†, Zhengan Zhao∗, Shengqiang Huang†
∗Department of Computer Science, University of Victoria, Victoria, BC, Canada

† Huawei Technologies Canada Co. Ltd., Vancouver, BC, Canada

Abstract—It is often needed to update deep learning-based
detection models in traffic anomaly detection systems for the
Internet of Things (IoT) because of mislabelled samples or
device firmware upgrades. Machine unlearning, a technique
that quickly updates the anomaly detection model without re-
training the model from scratch, has recently attracted much
research attention. We propose a novel machine unlearning
method, called ViFLa, which groups training data based on
estimated unlearning probability and treats each group as a
virtual client in the federated learning framework. Since the
virtual clients are physically in the same machine, ViFLa only
leverages the concept of data/local models isolation in federated
learning without incurring any network communication. ViFLa
adopts an attention-based aggregation method called enhanced
class distribution weighted sum (ECDWS) to tackle the non-
independent and identically distributed (non-IID) data problem
caused by the data grouping strategy. It also introduces a new
state transition ring mechanism into the statistical query (SQ)
learning framework to update the local model of each virtual
client quickly. Using real-world IoT traffic data, we showcase
the benefit of ViFLa regarding its efficiency and completeness for
model updates in the context of IoT traffic anomaly detection.

Index Terms—Machine unlearning, Model update, IoT traffic
anomaly detection.

I. INTRODUCTION

The Internet of Things (IoT) technology has triggered and
enriched many intelligent applications such as smart factories,
smart transportation, and smart homes. Unlike traditional Inter-
net applications, IoT systems have special features, e.g., cheap
and easy to deploy, that make them popular but more vulner-
able [1], [2]. Recently, deep learning-based anomaly detection
systems have been developed to safeguard IoT systems [2].
As an essential requirement, the IoT traffic anomaly detection
system needs to update the underlying machine learning model
when people upgrade the firmware of an IoT device that causes
small traffic changes or when some training data that were
previously labelled as normal but identified as abnormal at a
later time [3]. The task of updating an existing ML model to
remove the impact of certain training data on the model is
termed as machine unlearning.

Clearly, a naı̈ve method for machine unlearning is to re-
train the ML model from scratch using the complete set
of updated training data. This method is also called naı̈ve
unlearning. Nevertheless, naı̈ve unlearning is time-consuming
and ineffective for time-sensitive applications such as an
intrusion detection system. Cao and Yang [4] trained a naı̈ve

Corresponding author: Kui Wu (email: wkui@uvic.ca).

Bayes malware detector using 142, 350 malware samples and
found that it takes nearly a day to delete a sample and re-
train the model from scratch [4]. Taking hours, let alone a
day, to update an anomaly detection model in the production
environment is not acceptable. As such, we focus on machine
unlearning methods different from naı̈ve unlearning.

The criteria to evaluate a machine unlearning approach
should consider both efficiency and completeness. Here, ef-
ficiency refers to how fast the approach can update the model,
and completeness refers to how close the performance of
the updated model is to that of naı̈ve unlearning. There is
a clear tradeoff between efficiency and completeness: naı̈ve
unlearning achieves the best completeness but the worst effi-
ciency. A natural question is: could we achieve efficiency and
completeness at the same time? We offer a positive answer
for machine unlearning in IoT traffic anomaly detection by
leveraging the special features related to IoT traffic and the
concept of virtual federated learning.

Several recent research efforts have been devoted to machine
unlearning. For instance, Bourtoule et al. [5] proposed a
Sharded, Isolated, Sliced, and Aggregated (SISA) training
framework, which divides large training tasks into small sub-
tasks and only re-trains the shards containing the data points
that need to be unlearned. Cao and Yang [4] used statistical
query (SQ) to transform the learning algorithm into summation
form and only updated the summations relevant to the data
points that need to be unlearned. The summation forms of
simple algorithms such as naı̈ve Bayes and k-means are
provided in [4]. To speed up machine unlearning, all the above
methods isolate the impact of training data within a small
scope. The idea of data isolation, in principle, is similar to
federated learning, where each client trains a local model with
local data, and they work together to build a global model.

We frame the data isolation principle in machine unlearning
with a new concept called virtual federated learning. The
main idea of virtual federated learning approach (ViFLa) for
machine unlearning is as follows: We estimate the unlearning
belief values of training samples (unlearning belief refers to
the likelihood that a sample in a particular application context
is to be unlearned in the future), and divide the training
samples into different groups based on their unlearning belief
values. Each group is considered as a client in the traditional
federated learning, and thus a local model is trained for each
client. The outputs of local models are aggregated (at a virtual
server) using an attention-based aggregation method called
enhanced class distribution weighted sum (ECDWS) to obtain

2

Gateway

Anomaly detection model

trained and updated with ViFLa

Internet

Fig. 1. ViFLa at the gateway for training and updating anomaly detection
model. The detailed structure of ViFLa is in Fig. 3.

the final prediction result. Intuitively, if the data points to be
unlearned are contained in a small number of clients, we can
effectively speed up the unlearning process because only the
clients affected by unlearned data points need to re-train their
local models. We call this approach virtual federated learning
approach because the clients and server are only conceptual
and have no physical analogues in the real world. Virtual
clients are used for limiting the impact of data in a small
scope, and thus do not have any issue concerning data
privacy, network communication, and delay. Note that ViFLa,
SISA [5], and SQ-based unlearning [4] all follow the same
principle of data isolation but have quite different underlying
mechanisms for building the final model, as further illustrated
in Section IV-E.

We need to tackle two technical challenges in machine
unlearning with ViFLa. First, since we intentionally divide
data of high unlearning belief into a small number of clients,
it is likely that the data of different virtual clients are not
independent and identically distributed (non-IID). Handling
non-IID data in federated learning is a challenging task [6].
Second, each client needs to quickly update its local model
without re-training from scratch.

This paper systematically addresses the above challenges
and makes the following contributions:

• We present a novel framework called ViFLa, which is
deployed at network vantage points (e.g., the gateway as
in Fig. 1) for IoT traffic anomaly detection. The anomaly
detection model trained over the ViFLa framework can be
quickly updated whenever needed, e.g., when an IoT de-
vice firmware update causes small traffic changes. Since
the virtual clients and the virtual server can be located
in the same physical location (e.g., the gateway), ViFLa
does not need to consider the network communication and
delay between the clients and the server (the disadvantage
of traditional federated learning).

• Tackling the first challenge: Different from existing
model aggregation methods in traditional federated learn-
ing, ViFLa adjusts the weights for the outputs of local
models using the KL-attention mechanism, which im-
proves the collaborative performance of local models by
using their predicted vectors. The KL-attention mecha-
nism is highly linked to data distribution and global intent
and can achieve good performance in the presence of non-
IID data.

• Tackling the second challenge: ViFLa includes a fast
unlearning method for local models by introducing a state
transition ring into SQ-learning. We formulate a new

adaptive SQ-learning definition [7] for LSTM network.
The state transitions of parameters are represented by
the nodes and directed edges in the ring. Benefited from
the summation form and the state transition ring, model
parameter updates are much faster than naı̈ve unlearning.

• We evaluate the performance of ViFLa on IoT-23
dataset [8] and our own dataset to demonstrate the
advantages of ViFLa. ViFLa can obtain a significant
speed-up and similar test performance compared to naı̈ve
unlearning. A theoretical analysis shows that compared to
SISA [5], ViFLa can reduce the computational complexity
and the amount of data affected by unlearned samples.

II. RELATED WORK

Existing machine unlearning solutions can be roughly di-
vided into (1) solutions that modify model parameters directly
without accessing the training data, and (2) solutions that
update the model with the training data.

A. Modifying Model Parameters Directly without Accessing to
the Training Set

Solutions in this category modify model parameters without
accessing the original training data during the unlearning
process. Golatkar et al. [9] took an information-theoretical
approach and proposed a “scrubbing” method. The objective
of unlearning is translated to calculating optimal noise to
destroy information carried in the data we wish to forget.
Actually, the technique used by Golatkar et al. is equivalent
to avoiding forgetting the data that we wish to retain. To
be more specific, use the Fisher Information Matrix (FIM)
for the samples we wish to keep, and add optimal noise to
destroy information in the samples we wish to forget, i.e., add
noise to destroy the weights that may have been informative
about data to be forgotten but not data to be retained. Clearly,
Fisher Information Matrix (FIM) and its variation are the key
to letting the model remember the information in retained
samples after the “scrubbing” process. The main pitfall of this
approach is the high storage and computation overhead in the
operations of FIM.

Loosely, “optimal brain damage” introduced by LeCun et
al. [10] falls in this category. Nevertheless, the main goal is to
reduce the complexity of a deep neural network by removing
unimportant weights from a network. The basic idea is to use
the second derivative information to measure the impact of
parameters and delete those parameters that have the least
effect on the training error.

B. Updating the Model Quickly with the Training Set

Solutions [5], [11], [12] in this category update the model
quickly with the help of training data. The time for updating
the model depends on the amount of data to be unlearned and
the complexity of the learning algorithm. This type of solution
mainly includes two approaches. One is to reduce the amount
of data affected by the unlearning process. The other is to
reduce the time complexity of the unlearning algorithm.

Regarding the first approach, Ginart et al. [11] proposed a
divide-and-conquer k-means algorithm to divide the data into

3

Fig. 2. Classification of machine unlearning approach.

leaves and merge the results into parent nodes. Bourtoule et
al. [5] proposed a SISA framework to reduce the amount of
data that needs to be unlearned. The main idea is to divide
large training tasks into small sub-tasks. To remove the impact
of a data point from the model, this method only needs to
retrain the shard containing this data point. However, the
storage overhead of the slicing process in this method may be
high. Aldaghri et al. [13] encoded the training data into shards
using linear encoders prior to the learning phase. However,
this encoded machine unlearning approach was for simple
regression models and may be hard to apply in deep learning
models. Brophy et al. [14] introduced a machine unlearning
method specifically for random forests. It is still unclear how
to extend the technique for neural network models.

Regarding the second approach, Cao and Yang [4] used
statistical query (SQ) to transform the learning algorithm
into summation form. To remove the impact of a data point
from the model, we only need to update the summations
that involve the data and then update the model with the
updated summations. Since only partial summations need to
be updated, the process is much faster than naı̈ve unlearning.
The work [4] only includes the summation form of simple
algorithms, such as naı̈ve Bayes and k-means. In [15], Neel
et al. utilized convex optimization and reservoir sampling to
design a gradient-based machine unlearning method called
descent-to-delete. Nevertheless, this work is mainly theoretical
and depends on strong assumptions, e.g., the convexity of
the model, which may not be true in practical IoT anomaly
detection systems.

As shown in Fig. 2, ViFLa belongs to the second category,
i.e., updating the model quickly with the training set, but it
is different from all existing solutions in this category. To be
more specific, it uses the concept of virtual federated learning
to reduce the amount of data affected by unlearning. It also
uses smart-partition and a new model aggregation method.
Compared to the existing SQ approach [4], ViFLa formulates
a summation form of more complex models (e.g., LSTM
network), and uses state transition ring algorithm to speed
up the unlearning process. It can achieve high efficiency and
completeness for both IID and non-IID data.

Predicted vector 1 Predicted vector 2 Predicted vector K

Use state

transition ring to

update local model
no update no update

Group 1 Group 2 Group K

Virtual

Client 1

Virtual
Client 2

Virtual
Client K

Anomaly detection

Final predicted result

Smart-partition

Data that
need to be
unlearned

Testing

data

Enhanced Class Distribution Weighted Sum

Model update

 request

Anomaly detectionAnomaly detection

 : Model training : Model update (whenever needed): Testing
Training data

Local model 1 Local model 2 Local model K

Fig. 3. Architecture of ViFLa.

III. DETAILS OF ViFLa

A. Overview

A high-level view of ViFLa is shown in Fig. 3, where the
training, testing, and unlearning processes are denoted with
black, blue, and red arrows, respectively. The training of ViFLa
consists of two steps: smart partition and local model training.
For testing, each sample is input simultaneously to all the
local models and ViFLa uses an enhanced class distribution
weighted sum (ECDWS) to aggregate the outputs of local
models to obtain the final prediction result. When machine
unlearning is needed, ViFLa performs model update with the
method introduced in Section III-D.

For ease of reference, the main notations used in the paper
is listed in Table I.

B. Training ViFLa

ViFLa includes mainly two steps in training:
• Smart partition: this step divides training samples into

different groups based on their unlearning belief values.
Each group is treated as a “client” as in traditional
federated learning.

• Local model training: this step trains a local model
for each virtual client. To speed up (future) unlearning
process of the local model, the local model is formulated
in the summation form and the local model is trained
according to the summation form.

It is worth noting that ViFLa does not use an explicit global
model. Instead, it uses an enhanced class distribution weighted
sum (ECDWS) method, which is different from existing model
aggregation methods in traditional federated learning. ECDWS
only uses the prediction results of the local models and does
not use any local model parameters.

1) Smart Partition: Unlearning belief refers to the likeli-
hood that a sample in a particular application context is to
be unlearned. If we group samples of high unlearning beliefs
together and build a local model with these samples, when
an unlearning request arrives, the samples included in the

4

TABLE I
MAIN NOTATIONS

Notation Definition
x The feature of training sample
l Actual class value of training sample
ϵ A user-defined unlearning threshold
G The number of classes
K The number of sub-models
F The number of features

p(l|x1, x2, ..., xF)
The predicted probability that the sample belongs to
its actual label l

p(l)
The probability that the sample has actual class value
l

p(xf)
The predicted probability that the training samples
have feature value xf

p(xf |l)
The probability that the training samples have feature
value xf given that the actual class value is l

ni A node in state transition ring
ei An edge in state transition ring
B The number of mini-batches
θSj

The parameter state in node nj

gθSj
(batchb) The gradient of batchb at state θSj

fθSj
(batchb)

The mapping result of a sample batchb of query
SQj at state θSj

ASQj
The SQ answer at parameter state θSj

b∗x,l Unlearning belief of sample (x, l)

ÂSQj

The SQ answer at parameter state θSj
during un-

leaning

cli Sub-model i’s reliable value on class l
Nl The number of samples of class l
Ni,l The number of samples of class l in group i
vi The prediction of sub-model i’s outputs

vli
The probability that a test sample is predicted as
class l by sub-model i

R(j) The similarity vector for candidate vector vj

R(j)SUM The sum of all the elements in the similarity vector
R(j)

R(j, i)
The similarity of prediction vectors between sub-
model j and sub-model i

σ(R(j, i))
The softmax result of each element R(j, i) of the
similarity vector

v Final predicted vector
∗ The first part of notations is for smart partition; the second part is for
state transition ring; the third part is for naı̈ve class distribution weighted
sum method (NCDWS) and enhanced class distribution weighted sum method
(ECDWS).

unlearning request may be relevant to only one or very few
local models. The majority of local models do not need to be
re-trained.

Clearly, accurate estimation on unlearning belief is key
for smart partition. Such an estimation depends on specific
application context, and there exists no one-fit-all solution.
As an example, we use naı̈ve Bayes classifier [16], [17] to
estimate unlearning belief due to its simplicity yet surprising
efficacy in many complex real-world situations [18], [19].

Let X = (X1, X2, . . . , XF) denote F features of training
samples, where each feature takes value from its domain Df .
Let Z denotes the classes of the training samples, where Z
can take one of G values {1, . . . , G}. The details for preparing
training samples from raw IoT traffic data can be found in
Section IV-B.

Given the feature value x = (x1, x2, . . . , xF) of a training
sample, the predicted probability that the sample belongs to

Fig. 4. Workflow of smart partition. The range of the unlearning belief is
0.37 ≤ b∗x,l ≤ 1 since 0 ≤ p(l|x1, x2, ..., xF) ≤ 1. ϵ is a user-defined
threshold.

its actual class l(1 ≤ l ≤ G) can be calculated as:

p(l|x1, x2, ..., xF) =
p(l)

∏F
f=1 p(xf |l)∏F

f=1 p(xf)
, (1)

where p(xf) denotes the predicted probability of training
samples with feature value xf , p(l) denotes the probability
of training samples with actual class value l, p(xf |l) denotes
the probability of training samples with feature value xf given
that the actual class value is l.

We propose to estimate the unlearning belief value for the
sample (X = x, Z = l):

b∗x,l = e−p(l|x1,x2,...,xF). (2)

The above estimation is based on the observation that the
higher the probability p(l|x1, x2, ..., xF), the higher the con-
fidence that the system predicts the sample as class l, and
the lower the unlearning belief. As shown in Fig. 4, a lower
unlearning belief value implies a higher confidence in the
prediction result, e.g., the probability that the system predicts
the sample as class l in the context of intrusion detection of
Internet of Things (IoT). An unlearning belief value greater
than ϵ is considered as a high unlearning value, where ϵ is a
user-defined unlearning threshold.

After we estimate the unlearning belief for each training
sample, we group the training samples according to their
unlearning belief. To be more specific, given the number
of groups K, we order the training samples based on their
unlearning belief values and then evenly divide the ordered
samples into the K groups. In this way, we try to contain
the data points that are to be unlearned in a small number of
groups. After that, each group is treated as a client as in the
federated learning that trains a local model using the data in
the group. Refer to Section IV-E1 for the explanation on why
smart partition works in practice.

2) Local Model Training: Each group is considered as
a virtual client in the FL framework. We use the LSTM
network [20] as an example to illustrate the training method.

5

To speed up future unlearning, we adopt statistical query (SQ)
learning [4] to transform the LSTM network into summation
form, whose details are given in Appendix. Each LSTM local
model is trained with mini-batch gradient descent, and the
training of local models is independent of each other. In
addition, we introduce a new state transition ring mechanism
as shown in Fig. 5. The state transition ring involves B nodes
(n0, n1, . . . , nB−1) and B directed edges (e0, e1, . . . , eB−1),
where B is the total number of mini-batches. The state in node
nj is represented as θSj

. We use node n0 as the root node and
store the initial parameter state θS0

in this node.

The sum of the mapping
results of all the batches

Initial weights stored
in root node

First node that involves
unlearned samples

Fig. 5. State transition ring.

Statistical query (SQ) means the learning algorithm can
only query statistics about the training samples. We pro-
vide query SQj for each state θSj . The query consists of
a mapping function and a set of training batches Q =
{batch0, batch1, . . . , batchB−1}. The mapping result of a
sample batchb ∈ Q of query SQj at state θSj

is calculated
as,

fθSj
(batchb) =

{
gθSj

(batchb) if b = j

0 otherwise
(3)

where gθSj
(batchb) is the gradient of batchb at state θSj

.
We then calculate the summation-form answers of these

statistical queries (SQ). The answer of a statistical query SQj

is the sum of the mapping results of all the batches in the
training set, denoted as ASQj

=
∑B−1

b=0 fθSj
(batchb). Using

the answer ASQj , the parameter state θSj (stored in node nj)
is transferred to the state θSj+1

(stored in the node nj+1).
After updating all the states in the ring, we set the latest
state θSB

as the new initial state θS0
and store it in the root

node n0. We repeat this process until convergence determined
by “early stopping” [21], i.e., the accuracy on the validation
set has reached the expected value, and the accuracy will not
exceed this value in the next few iterations. The pseudo-code
for local model training is shown in Algorithm 1.

Remark. The state transition ring is not a new machine learn-
ing algorithm but just a summation form [4] of traditional ML
algorithms that makes the machine unlearning process faster.
Specifically, it degenerates the converged state in the learning
process to the previous state by updating the summation form.
This previous state serves as the initial parameter state to learn
a new convergent state. We can thus speed up the unlearning
process since the new initial state is close to a convergent

state. It is also worth noting that an epoch in the traditional
form of ML algorithms means one iteration over all training
data. When one or several epochs are trained, we update the
checkpoint of the model and only one checkpoint (state) is
saved. In contrast, the state transition ring keeps a separate
state for each batch and stores it in a node. Each yellow node
in the ring corresponds to a batch and a model state. During
the learning process, the state stored in a node is only updated
when the batch corresponding to its previous node is trained.

Algorithm 1: Local Model Training in ViFLa
Input: Initial parameter state θS0

stored in root node
n0, mini-batches Q = {batch0, . . . , batchB−1}

Output: state θS1 , . . . , θSB−1
, θS0 in the last epoch

1 repeat
2 for SQ j ← 0 to B − 1 do
3 for Batch b← 0 to B − 1 do
4 if j = b then
5 fθSj

(batchb) = gθSj
(batchb);

6 ASQj
= ASQj

+ fθSj
(batchb);

7 else
8 end
9 end

10 e = (j + 1) mod B;
11 Transfer state θSj stored in node nj to state

θSe stored in node ne by using the summation
form SQ answer ASQj

;
12 end
13 until Convergence;
14 return Final state θS1 , . . . , θSB−1

, θS0 stored in nodes
n1, . . . , nB−1, n0, respectively;

C. Testing ViFLa

Each test sample will be input to all local models simulta-
neously. After that, ViFLa uses an enhanced class distribution
weighted sum (ECDWS) to aggregate the outputs of local
models to obtain the final prediction result. Before presenting
ECDWS, we first introduce a naı̈ve class distribution weighted
sum method (NCDWS), and then explain how ECDWS over-
comes the main pitfall of NCDWS.

1) Naı̈ve Class Distribution Weighted Sum (NCDWS):
The motivation of NCDWS is to alleviate the impact of
non-iid data in different local models since the aggregation
performance is highly linked to the data distribution. In this
method, we analyze the class distributions in different local
models in advance, and determine the aggregation parameters
based on the class distribution. For a test sample, each sub-
model i outputs its prediction,

vi =
[
v1i v2i . . . vGi

]T
, (4)

where vli (1 ≤ i ≤ K, 1 ≤ l ≤ G) denotes the probability
that the sample is predicted as class l. The predicted vectors
in different local models will be used as input vectors of
NCDWS. One simple solution is to use the weighted average
over all the predicted vectors. However, this method may

6

suffer from non-IID data since the distribution of training
data largely impacts the test performance. To address the
problem, we define a class-based reliable value for each sub-
model. The reliable value is used to represent the reliability of
the prediction result of each sub-model for different classes,
denoted as 

c11 c12 ... c1K
c21 c22 ... c2K
...
cG1 cG2 ... cGK


where cli represents sub-model i’s reliable value on class l.
We use cli=

Ni,l

Nl
to approximate sub-model i’s reliable value

on class l since a sub-model observes better performance on a
class if it includes more training samples of this class. Ni,l is
the amount of samples with class l in sub-model i and Nl is
the total amount of samples with class l. The detail of NCDWS
is illustrated in Algorithm 2.

Algorithm 2: Naı̈ve Class Distribution Weighted Sum
(NCDWS)

Input: Predicted vector vi (1 ≤ i ≤ K) of the
sub-models, Nl(1 ≤ l ≤ G),
Ni,l(1 ≤ i ≤ K, 1 ≤ l ≤ G)

Output: Final predicted vector v
1 Initialing vl=0;
2 for class l← 1 to G do
3 for sub-model i← 1 to K do
4 vli = cli ∗ vli ;
5 vl = vl + vli ;
6 end
7 end
8 return Final predicted vector v=(v1,v2,...,vG);

NCDWS achieves good performance by considering class
distribution. However, it is not practical since it needs to
know the distribution of training data in different local models
in advance. This assumption is too strong and too demand-
ing in practice since (1) it needs to test the distribution
of training data and (2) this distribution may change after
model unlearning. To overcome this problem, we introduce
an enhanced class distribution weighted method (ECDWS).
Unlike NCDWS, ECDWS does not need to know any class
distribution information in advance.

2) Enhanced class distribution weighted sum: The core
of ECDWS is the KL-attention recommendation mecha-
nism, which we propose based on the concepts of KL-
divergence [22] and self-attention [23], [24]. The main idea
of KL-attention recommendation is to give higher weights to
similar outputs of local models. For a test sample, each sub-
model i outputs its prediction,

vi =
[
v1i v2i . . . vGi

]T
, (5)

where vli (1 ≤ i ≤ K, 1 ≤ l ≤ G) denotes the probability
that the sample is predicted as class l. To capture the global
intent of predicted vectors and ignore unimportant information,
we consider each sub-model’s predicted vector as a candidate
item in an KL-attention recommendation system. We calculate

the similarity between two candidate vectors vj and vi (1 ≤
j, i ≤ K). The similarity function R(j, i) is defined based on
KL divergence:

R(j, i) = e
−

∑G
l=1 vl

j log
vl
j

vl
i . (6)

We obtain a similarity vector R(j) for each candidate vector
vj , where R(j) = (R(j, 1),R(j, 2), . . . ,R(j,K)). Denote
R(j)SUM as the sum of all the elements in the similarity
vector R(j), i.e., R(j)SUM =

∑K
i=1R(j, i). We apply the

softmax function to each element R(j, i) of the similarity
vector, i.e., R(j)=(σ(R(j, 1)), σ(R(j, 2)), ..., σ(R(j,K))),
where σ(R(j, i)) = R(j,i)

R(j)SUM .
We then represent the candidate vector vj as a weighted

sum of all the candidate vectors:

vj =

K∑
i=1

σ(R(j, i))vi. (7)

That is, the weight is determined by the similarity of candidate
vectors. We repeat this process to update all the candidate
vectors until convergence. The proof of the convergence of
this process is given in Appendix. The detail of ECDWS is
given in Algorithm 3.

Algorithm 3: Enhanced Class Distribution Weighted
Sum (ECDWS)
Input: Predicted vector vi (∀1 ≤ i ≤ K) of the

sub-models
Output: Final predicted vector v

1 Initializing R(j)SUM = 0;
2 repeat
3 for candidate vector j ← 1 to K do
4 for candidate vector i← 1 to K do

5 R(j, i) = e
−

∑
l v

l
j log

vl
j

vl
i ;

R(j)SUM=R(j)SUM+R(j, i);
6 end
7 for candidate vector i← 1 to K do
8 σ(R(j, i)) = R(j,i)

R(j)SUM ;
9 end

10 vj =
∑

i σ(R(j, i))vi;
11 end
12 until Convergence;

13 v =
∑K

j=1 vj

K ;
14 return Final predicted vector v=(v1,v2,...,vG);

3) Summary of Test Procedure: We input the test sample
into the local models simultaneously and obtain a predicted
vector from each of the sub-models. The i-th value in the
vector denotes the probability that the sample belongs to the
i-th class. Then we apply the ECDWS algorithm to aggregate
these predicted vectors to obtain the final vector. The sample
is predicted as class i, where the i-th value in the final vector
is the largest. If there is a tie (i.e., multiple classes have the
same highest value), randomly assign a class from the tie.

7

D. Unlearning with ViFLa

The unlearning process in ViFLa is straightforward. To
unlearn some data, we update the summation form SQ answers
ASQj (∀0 ≤ j ≤ B − 1) in the learning process by removing
the contribution of the unlearned batch batchb (b ∈ U), where
U denotes the set of the index of all the unlearned batches. A
batch is considered as unlearned batch if its mapping result at
any state in the state transition ring is affected by the unlearned
samples. Then the convergent state θSB

stored in node n0 in
the learning process will degenerate to a previous state. We use
this previous state as our new initial parameter state and learn
a new convergent state. Different from the learning process,
the unlearning process is very fast since the new initial state
is close to a convergent state.

The main steps of the unlearning process are as follows:
• Step 1: Obtain the summation form SQ answer

ASQj (∀0 ≤ j ≤ B − 1) in the learning process.
• Step 2: Calculate the new SQ answers, denoted as

ÂSQj
(∀0 ≤ j ≤ B − 1), by removing the mapping

results of the unlearned batches from the SQ answers
obtained in the learning process, i.e., ÂSQj

=ASQj
−∑

b∈U fθSj
(batchb) (∀0 ≤ j ≤ B − 1).

• Step 3: Use the new summation form SQ answers
ÂSQj

(∀0 ≤ j ≤ B − 1) obtained in step 2 to update
the parameter state. The convergent parameter state θSB

will degenerate to a previous state.
• Step 4: Set this previous state as new initial state.
• Step 5: Repeat the training process (Section III-B2) until

convergence.

IV. ViFLa IN ACTION: MACHINE UNLEARNING FOR IOT
ANOMALY DETECTION

A. How and When Should ViFLa Be Used?

Note that ViFLa itself is not an anomaly detection model.
Instead, ViFLa provides a framework to train the detection
model and more importantly to quickly update the trained
model. It must work with an underlying anomaly detection
model for traffic anomaly detection. Therefore, ViFLa should
be deployed at the same place where the anomaly detection
model is trained and used, e.g., security gateways of an IoT
system. ViFLa can be applied to an IoT network wherever
multiple IoT devices are connected to the network.

Model update is a much-needed feature for anomaly detec-
tion in IoT. For instance, when some normal data samples used
for model training are later identified as anomalies or when
an IoT device upgrades its firmware and causes changes in
traffic patterns, the detection model should forget the impact
of obsolete data and accommodate the contribution of new
data. We in the following evaluate the benefit of ViFLa
with the underlying LSTM anomaly detection model (refer
to Appendix) and real-world trace data.

B. Data Preprocessing

We use IoT-23 dataset [8] as well as our own DCS-932LB
data. IoT-23 includes malicious and benign communication
sequences of different IoT devices. We use benign packets

of a Philips HUE smart LED lamp (21, 664 benign packets)
and Malware-Capture-34-1 (233, 865 packets). DCS-932LB
includes 28, 867 benign packets and 18, 559 Mirai malware
packets of a smart camera. We use IoT-23 dataset as it is
a commonly-used public dataset. Unfortunately, this dataset
does not provide data for some experiments, e.g., IoT traffic
data before and after device firmware update. Therefore, we
build our own testbed and collect dataset to complete the
experiments.

Anomaly detection can be built based on the communication
patterns of IoT devices. Using the 7 features proposed in [2],
we extract the characteristic patterns from the sequence of
benign data packets, and then determine whether the char-
acteristic pattern of a device is consistent with the patterns
learned from benign sequences. The seven features include:
traffic direction (incoming/outgoing), bin index of local port
number, bin index of remote port number, bin index of packet
length, tcp flags, protocol type, and bin index of packet inter-
arrival time. Using the above 7 features, We extract a feature
tuple (a1, . . . , a7) for each packet and then map each packet
to a packet type based on its feature tuple. The total number
of packet types is 38, i.e., the value of the feature tuple has 38
different combinations. As a result, the data packet sequence
in the dataset will be converted to a sequence of packet types.

After that, we convert the packet type sequence to the actual
input of ViFLa using a sliding window of size F . For any m(>
F), the packet type sequence (hm−F , hm−F+1, . . . , hm−1)
of F preceding packets PKm−F , PKm−F+1, . . . , PKm−1 is
used as the feature values (x1, x2, . . . , xF) of the input sample
(refer to Section III-B1), and the type of packet PKm is used
as the actual class value l of the input sample. These feature-
class pairs ((x1, x2, . . . , xF), l) can be used as training/testing
samples of ViFLa. We train a three-layer LSTM model in
the ViFLa framework for effective machine unlearning. Given
any m(> F) and the types of the F preceding packets
PKm−F , PKm−F+1, . . . , PKm−1, the detection model can
estimate the probability distribution that data packet PKm

belongs to different packet types. We set F = 20.

C. Completeness

To evaluate the completeness, we compare the results of
ViFLa and the results of naı̈ve unlearning. We use the confu-
sion matrix to visualize the results, where each row represents
the samples in an actual class, each column represents the
samples in a predicted class, and the value at (i, j) denotes
the probability that class i is predicted as class j.

As shown in Fig. 6, the confusion matrix obtained with
ViFLa after removing the contribution of some samples and
the confusion matrix obtained with a model re-trained from
scratch are very close. To quantitatively measure the difference
between two confusion matrices, we also calculate Cohen’s
kappa coefficient [25] between the two confusion matrices,
which is a well-known metric to assess the agreement between
two classifiers. The kappa score is above 0.9. Note that a kappa
score above 0.8 is generally considered good agreement [25].
The evaluation results demonstrate that ViFLa can achieve
nearly identical performance of retraining from scratch.

8

(a) (b)

Fig. 6. The confusion matrix of test data after removing the contribution of 5% training samples of the model by: (a) naı̈ve unlearning. (b) ViFLa. The
Kappa index between the two confusion matrices is 0.938. We also test the case of removing contribution of 20% training samples of the model by naı̈ve
unlearning and ViFLa (figures omitted for brevity). The Kappa index between the two confusion matrices is 0.921.

(a) (b)

Fig. 7. The speed comparison of two unlearning methods in training a new convergence when an IoT device (camera model: DCS-932LB) upgrades its
firmware version from: (a) V2.16.08 to V2.17.01, (b) V2.17.01 to V2.18.01.

Upgrade

New features

Patterns of firmware version 2.17.01Patterns of firmware version 2.16.08

Fig. 8. The traffic difference when the firmware of IoT device (camera model: DCS-932LB) is upgraded. After the firmware update, the user captures the
new traffic (right) of this device with wireshark and submits a model update request to ViFLa, which automatically identifies the difference in the feature and
updates the detection model accordingly. Different colours illustrate different packet types (Refer to Section IV-B for the detail of determining the type of a
packet). The coloured boxes at the bottom of the packet window mean that for every packet, the sequence of 20 preceding packet types is used as the feature.

9

Fig. 9. The speed comparison of two unlearning methods in training a new
convergence state for remaining training data.

D. Efficiency

In the first test, we emulate the scenario where an IoT device
upgrades firmware and thus accordingly needs to quickly
upgrade the corresponding detection model. The IoT device
we tested is a D-Link smart camera (model DCS-932LB). We
upgraded its firmware from V2.16.08 to V2.17.01, and then
from V2.17.01 to V2.18.01. We recorded its traffic before and
after each upgrade. Following the feature extraction method
of [2], we extract characteristic patterns from the data packet
sequence of the old firmware version and the new firmware
version of the IoT device, respectively. To quickly update
the detection model after the firmware upgrade, we can use
ViFLa to re-train the model. Note that we do not need to
manually compare the data samples in the two firmware
versions. Instead, we only need to replace the entire data
sample of the old version with the entire data sample of the
new version, and then use the parameters in the old version of
the model as the initial weights to retrain a model for the new
version. ViFLa can automatically identify the difference (based
on the initial weights and the state transition ring) and update
the model accordingly. As a comparison, we also retrain the
model from scratch using all the new traffic. As shown in
Fig. 7, ViFLa achieves a significant speedup compared to
retraining from scratch when we upgrade the device. Each
round of training means that we have completed the training
of a batch of samples (the batch size is 128).

Fig. 8 illustrates the traffic difference before/after the cam-
era’s firmware is upgraded, from which we can see that
firmware upgrade only causes small changes in traffic patterns
of the IoT device. The characteristic patterns in the new
version are similar to the characteristic patterns learned from
the old version. Benefiting from this and with the help of the
state transition ring, the convergence state of the old version
will be close to the convergence state of the new version. This
explains why ViFLa speeds up retraining from scratch.

In the second test, we randomly select a fraction of training
samples with probability following their unlearning belief
values. To unlearning the selected samples, we re-train the
model via ViFLa and via naı̈ve unlearning, respectively. The
training rounds required for different validation accuracy and

average validation loss of remaining data in ViFLa and the
training rounds using naı̈ve unlearning is shown in Fig. 9.
After unlearning training samples with the highest 5% belief
values, we can see that ViFLa needs 30 rounds to obtain 93.8%
validation accuracy of the remaining data, while retraining
from scratch requires 1794 rounds. In other words, ViFLa can
achieve up to 60X speedup compared to naı̈ve unlearning.

Note that we compare our proposed method with naı̈ve
unlearning for two main considerations. First, most of the
existing methods have already reported their improvements
over naı̈ve unlearning. Readers can compare different methods
more objectively by seeing how much improvement each
method achieves using naı̈ve unlearning as the baseline. Sec-
ond, due to the lack of experimental details, it is difficult to
fairly compare our method with the existing methods directly.
For instance, [15] presents a general method that may have
different implementation details.

E. Ablation Study: Compared to Other Methods

ViFLa is quite different from existing machine unlearning
methods, such as SISA [5], [3] and [4], in that ViFLa includes
new mechanisms, such as smart partition, ECDWS, and state
transition ring. In addition, the underlying machine learning
models of ViFLa is different from that in [4], [5]. Due to this
reason, it would be difficult to obtain fair comparison between
ViFLa and existing solutions. Nevertheless, we can remove
some mechanisms in ViFLa to gain insight on the advantages
of ViFLa over others, because the performance of ViFLa with
ablated function roughly reflects that of existing solutions. In
the ablation experiment, we also use IoT-23 data.

1) Smart Partition: To evaluate the benefit of smart parti-
tion, we randomly selected some training samples and misla-
beled their classes (i.e., modified the actual class to a different
class). Then we use k-fold (k = 4) cross-validation to calculate
the unlearning belief value for each sample. Each sample is
used once in the test set and used to train the naı̈ve Bayes
model 3 times. As a result, we can predict the probability of
each sample belonging to its labeled class. Then, we average
the predicted probability of all the mislabeled samples, and
further estimate their average unlearning belief value (the
threshold ϵ = 0.9). We found that mislabeled samples would
gain larger unlearning belief values. We then group (the group
number is 4) training samples according to their unlearning
belief. The test result is then compared with that obtained
from randomly group training samples. The benefit of smart
partition is reflected at the first and third rows of Table II under
different combinations. The smart partition-based method only
needs to update one single group to forget the mislabelled data,
while random group method need to update all four groups.

Remark 1. The good performance of smart partition comes
from the capability of the naı̈ve Bayes model in quickly learn-
ing the patterns in training samples. This does not necessarily
mean that the naı̈ve Bayes model is a good candidate for IoT
anomaly detection. The purpose of smart partition is to quickly
estimate the chance that a sample might need to be unlearned
in the future, and thus achieving highly accurate estimation,
while helpful, is not the goal.

10

TABLE II
ABLATION STUDY OF COMPONENTS IN ViFLa

Smart partition State transition
ring

ECDWS Test accuracy improvement∗ Unlearning speed improvement∗

iid non-iid iid non-iid

✓ ✓ ✓ 2% - 3%↑ 27% - 28%↑ ≈100x ≈120x

✗ ✓ ✓ 2% - 3% ↑ 27% - 28%↑ ≈25x ≈30x

✓ ✗ ✓ 2% - 3%↑ 27% - 28%↑ ≈4x ≈4x
∗ The improvement is over a modification of ViFLa that uses random data partition and weighted average local accuracy (WALAcc), and disables state

transition ring.

TABLE III
PERFORMANCE OF DIFFERENT AGGREGATION METHODS BEFORE AND AFTER UNLEARNING MISLABELLED SAMPLES.

Aggregation approach Accuracy of iid data (%) Accuracy of non-iid data (%)

learning unlearning learning unlearning

WALAcc 86.97 87.32 59.99 59.8

NCDWS 89.54 89.92 83.69 83.99

ECDWS∗ 89.79 90.02 87.47 87.65
∗ ECDWS achieves better performance without even knowing the distribution of training data.

2) State Transition Ring: To evaluate the benefit of state
transition ring for different LSTM structures, we test the
unlearning performance with and without state transition ring.
The benefit of state transition ring is reflected at the first and
second rows of Table II under different combinations.

3) NCDWS vs. ECDWS: Two types of baselines might be
considered. One is parameter-based aggregation method, such
as FedAvg [26] that learns a global model by aggregating pa-
rameters of local models. The other is weighted average local
accuracy (WALAcc) that aggregates the predicted accuracy of
sub-models based on the amount of training samples used to
train the sub-models. WALAcc improves a method in [27] by
putting weights on local accuracy. We omit FedAvg because
(1) the final (global) model is coupled with all local-models,
making FedAvg not suitable for machine unlearning, and (2)
FedAvg performs worse than WALAcc in our test.

We set the number of sub-models as 4, and test the per-
formance NCDWS and ECDWS. The class distribution of the
data samples generated from IoT-23 dataset benign traffic is
uniform. To evaluate the performance of different aggregation
methods on iid data, we evenly distribute the training data
to the four partitions. To evaluate the performance of non-
iid data, we distribute some classes of data samples only
to one or two partitions. From the results in Table III, we
can see that both NCDWS and ECDWS achieve significant
improvements over WALAcc in accuracy for non-iid data.
In addition, ECDWS shows clear advantages over NCDWS
because ECDWS can achieve similar accuracy without even
knowing the distribution of training data.

The above accuracy results only refer to the probability that
a sample is correctly predicted. They do not directly translate

to the anomaly detection result, which is disclosed below.

F. Performance of Anomaly Detection

A common strategy to test anomaly detection accuracy is
to treat a sample as abnormal if its accuracy is lower than
a threshold, and then trigger an anomaly alarm if a given
percentage of samples in a sliding window are abnormal. We
use false positive rate (FPR) and true positive rate (TPR) to
evaluate anomaly detection results. The 20% of benign traffic
generated by the Philips HUE smart LED lamp is used to test
the FPR, and malware traffic is used to test the TPR.

Since ViFLa is for model update and must work with an
underlying detection method for anomaly detection, we used
LSTM as the detection model for the test. The output of each
sample in ViFLa is a predicted vector v = v1, . . . , vG, where
vl denotes the probability that the sample is predicted as class
l(1 ≤ l ≤ G) based on its feature value x1, x2, . . . , xF .
Then we take the predicted probability of the actual class
of the sample. We choose an anomaly detection threshold to
0.01, and a sample is considered as abnormal if the predicted
probability of its actual class l is lower than the detection
threshold. If 50% of samples in a sliding window of size of
30 samples are abnormal, an anomaly alarm is triggered. As
a result, we got the performance of 100% TPR and no false
positives. This excellent performance is no surprise, because
the detection model is type-based (i.e., different IoT device
types use their corresponding detection model), which has
shown excellent detection accuracy as reported in previous
work [2].

11

V. EFFICIENCY ANALYSIS

While it is hard to have a fair comparison between ViFLa
and existing methods as discussed in Section IV-E, we can
perform a theoretical analysis on the efficiency of ViFLa to
offer more insights on the difference between ViFLa and
existing methods. For this, we use SISA as the baseline since
its components show a similarity to those in ViFLa. As rough
analogy, its sharding method corresponds to our smart partition
(i.e., a shard in SISA corresponds to a virtual client in ViFLa),
and its slicing method corresponds to our state transition ring.
The total samples of all the groups is represented as N .

First, we compare the time cost of sharding in SISA
with the time cost of smart partition in ViFLa. In sharding,
samples are randomly divided into different shards. Thus, the
probability that a sample to be unlearned falls on shard k
is 1

K , where K is the number of shards. The expected cost
of an unlearning sample is the average number of points
to be retrained caused by this unlearning sample, and the
expected total cost is the sum of the expected costs of all
unlearned samples [28]. Then, the expected total cost of all
the unlearning samples is

E1 =

M∑
i=1

i−1∑
j=0

(
i− 1

j

)
(
1

K
)j(1− 1

K
)i−1−j(

N

K
− j − 1) (8)

where M is the total number of samples to be unlearned, and
N
K is the number of samples in each shard. To help understand
(8), for any given ith unlearning sample, j means the number
of previous unlearning samples that fall in the same shard as
i. When i is fixed, a greater j means more samples land on
the same group.

In contrast, the smart partition in ViFLa groups samples
of high unlearning beliefs together and builds a local model
with these samples. When an unlearning request arrives, the
samples included in the request may be relevant to only one
or very few local models. The majority of local models do
not need to be re-trained. We sort the unlearned samples by
their belief values from high to low and divide them into
different groups. Therefore, an unlearned sample has a higher
probability of falling on the kth group than the (k + 1)th
group (1 ≤ k < K), where K is the number of virtual
clients. Assume that an unlearned sample falls on the group
(1, 2, . . . ,K) with probability (P1, P2, . . . , PK), respectively,
where

∑K
k=1 Pk = 1. Then the expected total cost of all the

M unlearned samples is

E2 =

M∑
i=1

i−1∑
j=0

(
i− 1

j

) K∑
k=1

Pk(Pk)
j(1− Pk)

i−1−j(
N

K
− j − 1).

(9)

While it is difficult to rigorously prove that E2 ≤ E1, we
run numerical simulation with randomly generated M,N,K,
and P1, P2, . . . , PK values for a million times and found that
E2 < E1 in all the tests; E2 = E1 only when P1 = P2 =
. . . = PK .

Second, we compare the time cost of slicing in SISA and
the time cost of state transition ring in ViFLa. The total cost of
slicing in SISA is e

′ N
K (23+

1
3R), where e

′
is number of epochs

without slicing and R is the number of slices in the retrained
model (refer to [28] for more details). When R is large enough,
we obtain the lower bound 2

3
N
K e

′
, where N is the total number

of samples and N
K is the number of samples in each shard.

In state transition ring, the total cost is ê N
BK = ê

B
N
K , where

ê is the number of iterations in state transition ring. In our
experiment, the value (normally < 5) of ê

B is much smaller
than 2

3e
′

since the new initial state is close to the convergent
state.

Third, we compare the storage cost between SISA and
ViFLa. SISA assumes that there are R slices in each shard
k. First, SISA trains the model using the first slice Dk,1 and
save the checkpoint as Mk,1. Then it trains the model using
the first two slices Dk,1 ∪ Dk,2 and saves the checkpoint as
Mk,2. Hence, it needs to store R model states (checkpoints)
for each shard. In its evaluation [28], the slice size is set to 1
since this value needs to be small enough for better unlearning
performance. Nevertheless, a very small slice size will make
the number of slices R in each shard close to the number of
samples N

K in each shard. So SISA needs to store N
K model

states for each shard. Overall, the total number of model states
that need to be stored in SISA is N since there are K shards.

In contrast, for each group k in ViFLa, we just need to
store a state for each node and there are B (B is the number
of batches in each group) nodes in the state transition ring.
Therefore, our method needs to store B model states for each
group. Since we have K groups, the total number of states that
need to be stored in ViFLa is BK. Clearly, BK < N because
N = BKT where T (> 1) is the batch size. In conclusion,
ViFLa incurs a smaller storage cost than SISA.

VI. CONCLUSION

Machine unlearning, a technique that quickly updates a
machine learning model and removes the impact of a small
portion of training data on the model, is much needed in IoT
traffic anomaly detection. The requests for machine unlearning
may come from different scenarios, e.g., some training data
may be mislabeled due to unknown attacks or an IoT device
upgrades its firmware and thus changes partial data that have
been used in the model training. We proposed a new solution,
ViFLa, that leverages the concept of virtual federated learning
and consists of three new mechanisms, smart partition, en-
hanced class distribution weighted sum (ECDWS), and state
transition ring, to achieve efficiency and completeness of ma-
chine unlearning. Using real-world trace data, we thoroughly
evaluate the performance of ViFLa, covering not only the
effectiveness of its individual components but also its benefit
in different application scenarios. Overall, ViFLa can achieve
similar accuracy of re-training from scratch with significant
speedup. We also performed a theoretical analysis of the
efficiency of ViFLa using SISA as a baseline. Compared to
the baseline, ViFLa can reduce the computational complexity
and the amount of data affected by unlearned samples.

REFERENCES

[1] S. Marchal, M. Miettinen, T. D. Nguyen, A.-R. Sadeghi, and N. Asokan,
“Audi: Towards autonomous iot device-type identification,” IEEE Jour-

12

nal on Selected Areas in Communications (JSAC) on Artificial Intel-
ligence and Machine Learning for Networking and Communications,
2019.

[2] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and
A.-R. Sadeghi, “Dı̈ot: A federated self-learning anomaly detection sys-
tem for iot,” in 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2019, pp. 756–767.

[3] M. Du, Z. Chen, C. Liu, R. Oak, and D. Song, “Lifelong anomaly
detection through unlearning,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp.
1283–1297.

[4] Y. Cao and J. Yang, “Towards making systems forget with machine
unlearning,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015, pp. 463–480.

[5] L. Bourtoule, V. Chandrasekaran, C. Choquette-Choo, H. Jia, A. Travers,
B. Zhang, D. Lie, and N. Papernot, “Machine unlearning,” arXiv preprint
arXiv:1912.03817, 2019.

[6] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[7] C.-T. Chu, S. Kim, Y.-A. Lin, Y. Yu, G. Bradski, K. Olukotun, and
A. Ng, “Map-reduce for machine learning on multicore,” Advances in
neural information processing systems, vol. 19, pp. 281–288, 2006.

[8] A. Parmisano, S. Garcia, and M. Erquiaga, “Stratosphere laboratory. a
labeled dataset with malicious and benign iot network traffic,” January,
2020.

[9] A. Golatkar, A. Achille, and S. Soatto, “Eternal sunshine of the spotless
net: Selective forgetting in deep networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 9304–9312.

[10] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D. Jackel,
“Optimal brain damage.” in NIPs, vol. 2. Citeseer, 1989, pp. 598–605.

[11] A. Ginart, M. Y. Guan, G. Valiant, and J. Zou, “Making ai forget you:
Data deletion in machine learning,” arXiv preprint arXiv:1907.05012,
2019.

[12] T. Baumhauer, P. Schöttle, and M. Zeppelzauer, “Machine un-
learning: Linear filtration for logit-based classifiers,” arXiv preprint
arXiv:2002.02730, 2020.

[13] N. Aldaghri, H. Mahdavifar, and A. Beirami, “Coded machine unlearn-
ing,” IEEE Access, 2021.

[14] J. Brophy and D. Lowd, “Machine unlearning for random forests,” in
International Conference on Machine Learning. PMLR, 2021, pp.
1092–1104.

[15] S. Neel, A. Roth, and S. Sharifi-Malvajerdi, “Descent-to-delete:
Gradient-based methods for machine unlearning,” arXiv preprint
arXiv:2007.02923, 2020.

[16] T. Bayes, “Lii. an essay towards solving a problem in the doctrine of
chances. by the late rev. mr. bayes, frs communicated by mr. price, in
a letter to john canton, amfr s,” Philosophical transactions of the Royal
Society of London, no. 53, pp. 370–418, 1763.

[17] I. Rish et al., “An empirical study of the naive bayes classifier,” in IJCAI
2001 workshop on empirical methods in artificial intelligence, vol. 3,
no. 22, 2001, pp. 41–46.

[18] Z. Harry, “The optimality of naive bayes,” in FLAIRS2004 conference,
2004.

[19] S. Russell and P. Norvig, Artificial intelligence: a modern approach.
Pearson, 2002.

[20] A. A. Cook, G. Mısırlı, and Z. Fan, “Anomaly detection for iot time-
series data: A survey,” IEEE Internet of Things Journal, vol. 7, no. 7,
pp. 6481–6494, 2019.

[21] L. Prechelt, “Early stopping-but when?” in Neural Networks: Tricks of
the trade. Springer, 1998, pp. 55–69.

[22] I. Csiszár, “I-divergence geometry of probability distributions and min-
imization problems,” The annals of probability, pp. 146–158, 1975.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[24] S. Zhang, Y. Tay, L. Yao, and A. Sun, “Next item recommendation with
self-attention,” arXiv preprint arXiv:1808.06414, 2018.

[25] G. H. Rosenfield and K. Fitzpatrick-lins, “A coefficient of agreement
as a measure of thematic classification accuracy.” Photogrammetric
Engineering and Remote Sensing, vol. 52, pp. 223–227, 1986.

[26] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[27] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khaz-
aeni, “Federated learning with matched averaging,” arXiv preprint
arXiv:2002.06440, 2020.

[28] L. Bourtoule, V. Chandrasekaran, C. A. Choquette-Choo, H. Jia,
A. Travers, B. Zhang, D. Lie, and N. Papernot, “Machine unlearning,”
in 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021,
pp. 141–159.

[29] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–80, 12 1997.

[30] R. G. Bartle and D. R. Sherbert, Introduction to real analysis. Wiley
New York, 2000, vol. 2.

APPENDIX

LSTM Summation Form: LSTM is a type of recurrent neural
network (RNN) architecture [29]. Each LSTM neuron has four
inputs: the original input x, the input gate that controls if x
could be written into the memory cell, the output gate that
decides if the value of the current neuron is accessible to the
other neurons, and the forget gate that decides what time to
forget the content in the memory cell. We train an LSTM
of three layers with mini-batches (sample size = 128), and
the dimension of its input feature is 20. Following [29], the
network is modelled as:

ft = σ(Wf ∗ [ht−1, xt] + bf)

it = σ(Wi ∗ [ht−1, xt] + bi)

C̃t = tanh(WC ∗ [ht−1, xt] + bC)

Ct = ft ◦ Ct−1 + it ◦ C̃t

ot = σ(Wo ∗ [ht−1, xt] + bo)

ht = ot ◦ tanhCt

where Wf ,Wi,WC ,Wo ∈ R128×(20+128), bf , bi, bC , bo ∈
R128, 128 is the number of hidden units, and 20 is the
dimension of the input feature. Each parameter state consists
of weights and bias of three LSTM layer and two fully
connected layer. The initial parameter state of the network θS0

is the parameter state stored in node n0 of the state transition
ring in Fig. 5. At each state, a mini-batch (128 samples) batchb

is input to the network and estimate the batch loss if b = j
(refer to Eq. (3)). We backward propagate this batch loss and
calculate the gradient giθS0

(batchb)
for each parameter i and

use this gradient as the mapping result. The summation form
of the LSTM network is the sum of mapping results of all the
batches at state θSj , i.e.,

∑
b fθSj

(batchb).
Proof of the convergence of KL-attention: We provide a
sketch proof. The proof is based on the concept of Cauchy
sequence. The vector update rule defined by Eq. (7) is equiv-
alent to a mapping function T (vj) =

∑K
i=1 σ(R(j, i))vi. We

use ||.|| to denote the vector norm. For ∀j ∈ {1, . . . ,K}, we
can calculate the difference between vj and T (vj) as:

||vj − T (vj)|| = ||vj −
K∑
i=1

σ(R(j, i))vi||

= ||
K∑

i ̸=j,i=1

σ(R(j, i))(vj − vi)||

We slightly abuse the notation by using vvv to represent the set
of vectors vvv = {v1, v2, . . . , vK} and T (vvv) to represent the set
vectors T (vvv) = {T (v1), T (v2), . . . , T (vK)}. We define the

13

distance between vvv and T (vvv) as: d(vvv, T (vvv)) =
∑K

j=1 ||vj −
T (vj)|| =

∑K
j=1 ||

∑K
i ̸=j,i=1 σ(R(j, i))(vj − vi)||.

Similarly, we can obtain the distance d(T (vvv), T 2(vvv)) as fol-
lows:

d(T (vvv), T 2(vvv))

=

K∑
j=1

||
K∑

i ̸=j,i=1

σ(R′(j, i))(T (vj)− T (vi))||

where T 2 means applying the mapping function again, i.e.,
the second-round update with Eq. (7). The mapping function
of a vector is the weighted average of all the vectors, and
the similarity of the vector and other vectors will become
smaller after mapping T . So the distance d(T (vvv), T 2(vvv)) ≤
d(vvv, T (vvv)). There must exists a number a(0 < a < 1) that
makes d(T (vvv), T 2(vvv)) ≤ a ∗ d(vvv, T (vvv)).

By induction and by triangle inequality, we have
d(T n(vvv), T m(vvv)) ≤ d(T n(vvv), T n+1(vvv)) + . . . +
d(T m−1(vvv), T m(vvv)) ≤ an ∗d(vvv, T (vvv))+an+1 ∗d(vvv, T (vvv))+
. . .+ am−n−1 ∗ d(vvv, T (vvv)) = an ∗ d(vvv, T (vvv)) ∗

∑m−n−1
k=0 ak.

So d(T n(vvv), T m(vvv)) ≤ an ∗ d(vvv, T (vvv)) ∗
∑n−m−1

k=0 ak =

an ∗ d(vvv, T (vvv)) ∗ am−n

1−a < an∗d(vvv,T (vvv))
1−a for all n < m. For

any ϵ > 0, we can choose an N satisfying aN∗d(vvv,T (vvv))
1−a < ϵ.

Then for N ≤ n ≤ m, d(T n(vvv), T m(vvv)) < ϵ.
So the sequence {vnvnvn = T n(vvv)}∞n=1 is a Cauchy sequence.

Convergence is proved due to the Bolzano–Weierstrass theo-
rem [30] that “each bounded sequence in Rn has a convergent
sub-sequence”, and a Proposition [30] that “if a sub-sequence
of a Cauchy sequence converges to x, then the sequence itself
converges to x.”

Jiamin Fan received her B.S. degree in Telecom-
munications engineering from Nanjing University of
Posts and Telecommunications, China, in 2014, and
the M.S. degree in computer science from University
of Victoria, Canada in 2018. She is currently a
Ph.D. student in the Computer Science Department,
University of Victoria, Canada. Her research in-
terests include networking, machine learning, and
distributed computing.

Kui Wu (Senior Member, IEEE) received the B.Sc.
and M.Sc. degrees in computer science from Wuhan
University, Wuhan, China, in 1990 and 1993, re-
spectively, and the Ph.D. degree in computing sci-
ence from the University of Alberta, Edmonton,
AB, Canada, in 2002. He joined the Department of
Computer Science, University of Victoria, Canada,
in 2002, and is currently a Full Professor there.
His current research interests include network per-
formance analysis, online social networks, Internet
of Things, and parallel and distributed algorithms.

Yang Zhou received the B.S. degree in Electronic
Engineering from Jilin University, Changchun,
China, the M.S. degree in Electronic Engineering
from Peking University, Beijing, and the M.S. degree
in Computer Science from Simon Fraser University,
Burnaby, Canada. He is currently a senior data
scientist and a cyber security researcher. His main
research interests include malware detection and
classification with machine learning techniques and
attacks against operation systems and networks.

Zhengan Zhao received the B.Sc. degree in Com-
puter Science from Miami University, Ohio, USA,
in 2020, and the M.Sc. degree also in Computer
Science from the University of Victoria, BC, Canada,
in 2022. He is currently a Ph.D. student in the
Department of Computer Science, University of Vic-
toria, Canada. His research interests include IoT
network anomaly detection and access control.

Shengqiang Huang is currently a Senior Principal
Engineer with Huawei Technologies Canada Com-
pany Ltd. He has more than 20 years of extensive
experience in the network security industry, reverse
engineering, video processing, financial trading sys-
tem, and general software architecture with roles
that span across organization and business maturity.
His specialties are anti-virus engine development,
intrusion prevention systems, sandboxing, industrial
control systems security, APT/malware, NGFW, ap-
plication layer security, and UTM. He is leading the

anti-virus and sandbox product research in Huawei. Prior to joining Huawei,
he was the Lead Architect and held the role of key research and development
at Wurldtech Securities, a Canadian industrial control systems security start-
up acquired by General Electric (GE) in 2014. Prior to Wurldtech, he was
a Senior Software Developer of Fortinet anti-virus engine core team. Before
Fortinet, he had held various product management and development roles.

