
A Lightweight Path Validation Scheme in
Software-Defined Networks
Bing Hu†, Yuanguo Bi†, Kui Wu§, Rao Fu†, Zixuan Huang†

†School of Computer Science and Engineering, Northeastern University, Shenyang, China
§Department of Computer Science, University of Victoria, B.C., Canada

Abstract—Software-Defined Networks (SDN) revolutionize tra-

ditional networks by separating control and data planes for

enhanced agility and programmability. This separation, however,

also opens up vulnerabilities, allowing adversaries to manipulate

data plane forwarding and breach security policies. To counter

this, we propose a Lightweight Path Validation Scheme (L-PVS)

specifically designed for SDN environments. Our approach uses

a simple validation scheme for packet forwarding paths that

verifies the paths traversed by packets. Then, we further amplify

the scheme with a network flow path validation to boost the

validation efficiency. To reduce storage demands on switches

during flow path validation, we develop a storage optimization

method that aligns switch storage overhead with network flows

rather than individual packets. Furthermore, we formulate a path

partition scheme and present a Greedy-based KeySwitch Node

Selection Algorithm (GKSS) to pinpoint optimal switches for path

partition, significantly reducing overall data plane storage usage.

Lastly, we design a technique using temporary KeySwitch nodes

to identify anomaly switches when the controller encounters path

validation failure. Evaluation results verify that L-PVS facilitates

path validation with a reduced validation header size while

minimizing the impact on processing delay and switch storage

overhead.

Index Terms—software-defined networks, forwarding behavior

anomaly, forwarding path validation, storage optimization.

I. INTRODUCTION

T
He original network protocols are not designed to authen-
ticate packets’ transmission path. This limitation cannot

ensure packets are transmitted along their intended paths.
Numerous cases have shown that routers are susceptible to
compromise [1], [2], leading to packet forwarding paths that
diverge from network policy [3]. This deviation presents a
significant security risk: compromised routers can maliciously
redirect packets, deviating from network policy and potentially
enabling unauthorized access to sensitive data or disrupting
network operations. Non-compliant packet forwarding can
also result in network congestion, packet loss, or delay,
significantly degrading network performance and user expe-
rience [4].

To address the above problem, path validation empowers
network devices to verify that packets follow paths com-
pliant with network policies, thus enabling swift detection
of abnormal packet delivery behaviour. Significant research
efforts have been devoted to implementing path validation in
traditional IP networks [4]–[9]. Nevertheless, modern network
applications like data centers and intelligent manufacturing
often require frequent modification and customization of
network traffic policies. This is a hard-to-meet demand for

traditional IP networks [10]. For ease of network management
and operation, Software-Defined Networks (SDN) decouple
the network’s control plane and data plane [11], [12]. The
controller in the control plane forms the traffic policies and
implements forwarding rules into the switches in the data
plane via SDN protocols like OpenFlow [13]. The switches
then forward packets based on these rules. Network operators
can alter traffic policies through the controller to dictate how
the switches forward packets. While this separation gives SDN
many advantages over traditional networks, it invalidates the
existing path validation mechanisms designed for traditional
networks. Also, it makes the switches more vulnerable to
attacks [14], [15].

Unfortunately, the SDN protocols are not designed to val-
idate packet paths, allowing compromised switches to divert
packets from their intended switches undetected by the con-
troller. The issue of validating packet forwarding paths in
SDN is challenging. Since a logically centralized controller
governs all switch-forwarding behaviour, transmitting every
packet path information to the controller could significantly
consume switch-to-controller bandwidth, impairing the con-
troller’s capacity to distribute flow rules to the data plane.
One solution involves the controller implementing path vali-
dation by gathering packet counts based on the corresponding
matching rules [16]–[18]. However, the accuracy of the packet
count-based method is inherently limited by the precision of
packet statistics. Another approach adds a validation header
to each packet to record the switch information along the
transmission path [19]–[22]. Although the last-hop switch
can compress packet validation headers, thereby reducing
switch-to-controller bandwidth consumption, it still incurs
significant switch storage resources when handling a large
number of packets. Furthermore, during the validation pro-
cess, the controller must compute the update procedure for
each packet’s validation header (packet-based validation in
the controller), thereby consuming considerable computational
resources. Consequently, it is a substantial challenge to con-
currently ensure low switch-to-controller bandwidth overhead,
low switch storage consumption, low controller validation
cost, and high validation accuracy.

We propose a Lightweight Path Validation Scheme (L-PVS)
for SDN to tackle the above challenges. Our path validation
scheme is distinct from all existing solutions, as illustrated in
Fig. 1. The key contributions of this paper include:

• We design a lightweight packet forwarding path valida-

Packet Path Validation

Traditional Networks

Software-Defined Networks

Const-Size Header
(Atomos, PPV, Hummingbird)
unsuitable for scenarios with

 frequent network policy changes

Variable-Size Header
(ICING, OPT, EPIC)

high bandwidth overhead

Variable-Size Header
(ICING, OPT, EPIC)

high bandwidth overhead

Validation Header

Validation Header

Variable-Size Header

Const-Size Header

Packet-based Validation in the Controller

Flow-based Validation in the Controller

(REV)
high computational resource usage in the controller

(SDNsec, RuleOut)
need to add tags to each packet
header for all matching rules

(Our L-PVS solution)
precomputes the validation information in the data plane

Packet Count
(FADE, iFADE, FOCES)

imprecise packet counting at switch
ports results in decreased accuracy

Packet Count
(FADE, iFADE, FOCES)

imprecise packet counting at switch
ports results in decreased accuracy

Validation Header

Variable-Size Header

Const-Size Header

Packet-based Validation in the Controller

Flow-based Validation in the Controller

(REV)
high computational resource usage in the controller

(SDNsec, RuleOut)
need to add tags to each packet
header for all matching rules

(Our L-PVS solution)
precomputes the validation information in the data plane

Packet Count
(FADE, iFADE, FOCES)

imprecise packet counting at switch
ports results in decreased accuracy

Fig. 1. Classification of packet path validation.

tion scheme for SDN and provide an in-depth feasibility
analysis of the validation process. To enhance validation
efficiency, we extend the packet path validation to net-
work flow path validation.

• We propose a method for optimizing the storage pro-
cedure, which precomputes the validation information at
the last-hop switch. This method reduces both the storage
overhead on switches and the validation overhead on the
controller during the validation process.

• To minimize overall data plane storage overhead, we
partition long paths into multiple sub-paths and validate
overlapping sub-paths of different network flows simul-
taneously. We propose a heuristic algorithm, GKSS, to
identify suitable switches (KeySwitch nodes) for path
partition. In addition, we use temporary KeySwitch nodes
to pinpoint anomaly switches when the controller encoun-
ters path validation failure.

• We implement the proposed scheme and evaluate its
performance. Evaluation results confirm that L-PVS ef-
fectively reduces the size of validation headers while min-
imizing processing delay and switch storage overhead.

II. RELATED WORK

A. Path Validation in Traditional Networks

In traditional networks, a common path validation method
is adding a validation header to each packet. The ICING
protocol [5] inserts Proofs of Provenance (PoPs) into headers
for path validation. Routers verify packet paths by examining
the PoPs. To reduce the storage and computation overhead
in routers during the path validation process, the OPT pro-
tocol [6] uses dynamically recreatable keys (DRKey) for
origin path tracing. EPIC [4], introduced by Legner et al.,
achieves a 3-5 times reduction in communication overhead
compared to schemes like DRKey and ICING. Nevertheless,
including proofs from every router along the transmission path
in the validation header still substantially increases bandwidth
overhead, particularly for longer paths.

To reduce the bandwidth overhead in the validation process,
Atomos [7] introduces a solution using a constant-sized val-
idation proof. This approach prevents the increase of packet
header-space overhead as the path length grows. In addition,
both PPV [8] and Hummingbird [9] propose a probabilistic
packet marking strategy to reduce computational overhead.

B. Path Validation in SDN
1) Packet Count-Based Path Validation: In SDN, the con-

troller can collect data plane status information. As packets
pass through each hop and undergo rule matching at each
switch, the match count for a network flow should be con-
sistent across all hops. To identify forwarding anomalies, the
FADE method [16] installs dedicated rules to gather flow
statistics. These statistics are then verified to detect irregu-
larities. Building upon this approach, the iFADE method [17]
reduces the number of required rules by aggregating network
flows that follow the same sequence of switches. Furthermore,
Zhang et al. propose FOCES [18], which constructs a Flow
Counter Matrix (FCM) within the controller. Packet path
validation is achieved by checking the consistency between
the FCM and the flow counters in the data plane.

2) Validation Header Based Path Validation: Another ap-
proach for path validation in SDN involves adding a validation
header to each packet. SDNsec [19] proposes that switches
embed their proofs into the validation header, which can then
be sent to the controller for path validation. In RuleOut [20],
a tag sequence is added to each packet, corresponding to
the rules the packet should match. This allows switches
to verify each packet’s forwarding correctness by checking
the associated tag. The Verifying Rule Enforcement (REV)
technique [21], [22] enhances path validation by adding switch
identification to the validation header through encryption after
packet reception. REV also uses a compressive message au-
thentication code to reduce the size of the validation header
for the same flow at the last switch.

All existing solutions have shortcomings. Packet count-
based methods are sensitive to packet losses and network
congestion because these factors may result in inaccurate
packet counts in SDN switches. Validation header-based meth-
ods incur substantial bandwidth overhead because they in-
clude information about all switches along the path in the
validation header. Compressing the validation header in the
last hop switch can reduce switch storage and switch-to-
controller bandwidth usage, but the controller would face high
computational overhead. This is because it must compute the
update process of the validation headers for each packet at
every hop, leading to considerable computational demands for
packet-based validation.

L-PVS is unique, as illustrated in Fig. 1. We list a qualitative
comparison between existing path validation schemes and L-
PVS in Table I.

III. SYSTEM AND ATTACK MODELS

We consider an SDN architecture where a logically central-
ized controller manages switches. The controller installs flow

TABLE I
COMPARISON OF EXISTING PATH VALIDATION SCHEMES VS. OUR L-PVS SCHEME

solution
specification

Traditional
Networks /

SDN
Granularity Method Header Size Validation

Cost
Theoretical
Accuracy

EPIC [4], ICING [5],
OPT [6]

Traditional
Networks packet validation header variable packet-related 100%

PPV [8], Atomos [7],
Hummingbird [9]

Traditional
Networks packet validation header const packet-related 100%

FADE [16], iFADE [17],
FOCES [18] SDN flow packet count - flow-related About 99.5%

SDNsec [19] SDN packet validation header variable packet-related 100%
RuleOut [20] SDN packet validation header variable packet-related 100%

REV [21], [22] SDN flow validation header const packet-related 100%
L-PVS SDN flow validation header const flow-related 1� 10�6

Correct path
Path detour
Switch bypass
Path forging
Out-of-order

Correct path
Path detour
Switch bypass
Path forging
Out-of-order

Control Plane
Data Plane

Controller

S2 S4

S6S6S5S5

SmSm Sm+1Sm+1

S3S3

S7S7

S2 S4

S6S5

Sm Sm+1

S3

S7

S1S1

Fig. 2. Forwarding anomalies in the data plane.

rules into the flow tables of switches, which forward packets
following the rules. Each rule consists of a matching field and
an action field, with the former determining which packets to
process and the latter determining how to process them.

The security of the SDN architecture might be compromised
if an adversary exploits vulnerabilities of the switch OS [14],
[15]. Adversaries can modify the output ports of flow rules on
the compromised switches [22]. For example, as illustrated in
Fig. 2, the correct forwarding path of a packet is S1 ! S2 !
S3 ! S4 ! S5 ! S6. The adversary, however, may reroute
the packet along a different path, resulting in a forwarding
anomaly. There are four types of forwarding anomalies:

• Path detour: A malicious switch reroutes packets to a
switch that is not the intended next-hop in the forwarding
path, but later the packets return to the designated next-
hop switch. In Fig. 2, S2 sends packets to S7, and then
S7 sends packets to S3.

• Switch bypass: A malicious switch selectively forwards
packets to a specific switch along the path, bypassing
other switches in the path. In Fig. 2, switch S2 forwards
packets to S5, but skips switches S3 and S4.

• Path forging: A malicious switch reroutes packets to
a switch that diverges from the intended path, resulting
in the packets being forwarded along another path. For
instance, in Fig. 2, S2 forwards packets to Sm, causing
the forwarding path becomes S1 ! S2 ! Sm !
Sm+1 ! ...! S6.

• Out-of-order traversal: Packets are being forwarded by

switches that are part of the intended path but not in the
correct sequential order. In Fig 2, packets are forwarded
along the path S1 ! S3 ! S2 ! S4 ! S5 ! S6

instead of following the designated path.

Note that the above are all the forwarding anomalies known
to the public. Handling other forwarding anomalies, if any, is
left for our future work. Also, we only consider anomalies that
affect the forwarding path of packets. Anomalies that do not
alter the forwarding path, such as packet modification, packet
dropping, or packet replay [23], are out of the scope of the
paper. We assume that the controller and most of the switches
can be trusted because, otherwise, the attacker can take down
the whole network.

IV. METHOD FOR PACKET PATH VALIDATION

We first introduce our packet path validation method, which
helps readers easily understand L-PVS’s flow path validation
process presented in the next section. When a switch connects
to the controller, it receives a unique public identification. In
addition, the switch receives keys, one for the switch itself
and the rest for its ports. Note that keys are used to record the
switch ports a packet traverses, while identifications are used
to track the switch sequence. We classify switches into four
distinct categories:

1) InSwitch: These switches receive packets directly from
the source hosts.

2) RelaySwitch: These switches forward packets received
from one switch to another.

3) OutSwitch: These switches send packets to the destina-
tion hosts.

4) KeySwitch: These switches divide paths into sub-paths,
a process further detailed in Section V-C.

Operations of InSwitch: The InSwitch node attaches a
validation header to each packet to track its intended path.
For instance, as shown in Fig. 3, when a packet pkt enters the
network, the InSwitch node, S1, attaches the validation header
h to pkt. The validation header comprises two fields: fs and
fk. Inspired by [7], we utilize an additive operation to update
the validation header as the switch processes the packet. This
approach enables the validation header to maintain a constant

pkt hpkt pkt h pkt h pkt

1

1

1

s

k in

f s
f k k

 

22

2

k s k in

s s

f f f k k

f f s

   

 
mm

m

k s k in

s s

f f f k k

f f s

   

 

① ② ③ ③ ④

④

⑤

S1 S2 Sm

Controller check 'k kf f

Sender Receiver

?

Fig. 3. Packet path validation.

size regardless of the path length. The additive operation is
defined as

(fs, fk)~�(s, k) = (fs � s, fs � fk � k), (1)

where � denotes the XOR (exclusive OR) operation. We use
the symbol ~� to highlight the asymmetric property of the
additive operation, meaning that the order of operands matters.

The InSwitch node S1 initializes the validation fields of pkt
before sending it to the next hop. This process is expressed as

fs s1, fk k1 � kin1 , (2)

where s1 refers to the identification of S1, k1 represents the
key assigned to S1 by the controller, and kin1 represents
the key assigned to the port from which S1 received the
packet1. We will use different subscripts to represent the above
information in different switches. For instance, si represents
the identification of switch Si.

Operations of RelaySwitch: If a RelaySwitch node Si

(referring to S2, S3, . . . , or Sm�1 in Fig. 3) receives a packet,
it utilizes the additive operation in (1) to update the validation
fields fs, fk of the packet, which can be expressed as

(fs, fk) (fs, fk)~�(si, ki � kini). (3)

Operations of OutSwitch: When an OutSwitch node (e.g.,
Sm in Fig. 3) receives the packet, it firstly updates the
validation fields using (3), then it sends the validation header
to the controller.

Packet path validation in controller: The controller uti-
lizes its knowledge of the network-wide packet forwarding
process to validate the packet transmission path. Denote the
path the packet pkt takes as S1 ! S2 ! . . . ! Sm,
where m is the length of the path. To validate the path
that pkt has traversed, the controller computes the value of
the validation field fk. The notations in the controller are
represented by adding a prime symbol to the corresponding
notations used by the switch. For example, the computed
result of the validation field is denoted as f 0

k. The computation
process can be expressed as

f 0
k =

m�1M

j=1

jM

i=1

s0i �
mM

j=1

(k0j � k0inj
), (4)

1We assume that the keys have the same length. Otherwise, we can pad the
shorter keys with zeros without causing any problem.

where
nL

i=1
represents the cumulative XOR operation. For

example,
nL

i=1
xi = x1 � x2 � · · ·� xn. The controller checks

whether or not fk and f 0
k are equal. If yes, the validation

succeeds; otherwise, the validation fails, implying the packet
did not follow the designated path.

Correctness Analysis: If the packet follows the designated
path, the validation field fk received from the data plane
should equal the validation field f 0

k computed in the controller.
With (2) and (3), the validation header in the data plane can
be computed as

(fs, fk) = (s1, ks1)~�(s2, ks2)~� · · · ~�(sm, ksm), (5)

where ksi = ki�kini . According to (1) and (5), the validation
field fk can be computed as

fk =
m�1M

j=1

jM

i=1

si �
mM

j=1

(kj � kinj). (6)

Comparing (4) and (6), we can see that fk is equal to f 0
k if

pkt follows the designated path.
Remark 1: The XOR operation prevents a switch from in-

ferring the keys assigned to other switches. For instance, based
on the value of fk in (2), it is computationally infeasible [24]
to infer the value of k1 or the value of kin1 since both k1 and
kin1 are secure keys, which are considered as random bits.

V. FLOW PATH VALIDATION WITH L-PVS

In packet path validation, the data plane must send a
validation header to the controller for each packet, which sig-
nificantly taxes switch-to-controller bandwidth. By extending
packet path validation to network flow path validation, we vali-
date entire flow sequences instead of individual packets, signif-
icantly reducing switch-to-controller bandwidth consumption.
In this context, a network flow is defined as a sequence of
packets that undergo processing based on the same sequence
of flow rules.

A. Network Flow Path Validation Process

We denote the packets of the network flow as
pkt1, pkt2, ..., pkti, pktn, and the designated path for
this flow is S1 ! S2 ! ... ! Sm. In the network flow
path validation process, the OutSwitch node Sm operates

differently: Upon receiving a packet, Sm updates the
validation field and keeps the validation header locally instead
of sending it to the controller immediately.

Let V Ii denote the ith validation header stored at the
OutSwitch node. We use subscripts to denote the different
fields of V I . For example, V Iik represents the field in V Ii

that corresponds to the validation field f i
k in pkti. If the

controller needs to validate the path of a network flow, it
sends a validation request to the corresponding OutSwitch
node. The OutSwitch node Sm forwards the locally stored
validation information, V I1, V I2, ..., V In, to the controller.
The request frequency is based on network needs. We adopt
a time-slice polling method to send validation requests to the
data plane within a specified time interval. For each validation
information V Ii, the controller computes V Ii

0

k as

V Ii
0

k =
m�1M

j=1

jM

l=1

s0l �
mM

j=1

(k0j � k0inj
). (7)

The flow’s forwarding path can be verified as

Validation result =

8
<

:
success , if

nP
i=1

V Ii
0

k =
nP

i=1
V Iik,

failure, otherwise,
(8)

where n denotes the total number of packets that have tra-
versed the path.

Correctness Analysis: Validating the path of a network
flow entails validating the path of all packets in the flow, that
is,

8i 2 [1, n], V Ii
0

k = V Iik. (9)

Clearly, if (9) is true, then the flow path validation succeeds.
Nevertheless, we cannot claim the flow path validation fails if
(9) is false. In other words, our flow path validation has no
false negatives but may, in theory, have false positives, i.e.,
(9) is false, but the flow path validation succeeds.

The probability of false positives, however, is negligible.
Denote the set of packets that do not follow their designated
path as U . For each packet i 2 U , we can calculate the
difference between V Ii

0

k and V Iik, denoted as �i = V Ii
0

k �V Iik.
Note that the value of each �i is considered to be a random
number because the secure keys involved in (7). Then, we can
split U into two subsets, U1 and U2, such that if �i > 0 then
packet i 2 U1 otherwise, packet i 2 U2. The only condition
for false positives to occur is

X

i2U1

�i +
X

j2U2

�j = 0. (10)

Equation (10) implies that the sum of a sequence of random
numbers equals the sum of another sequence of random
numbers. The probability for (10) to hold is nearly zero.
Indeed, we have never observed false positives in our later
experiments.

B. Storage Optimization

The flow path validation method places a heavy storage bur-
den on OutSwitch nodes by requiring them to store validation
headers for all packets in a network flow. We propose a novel
Storage Optimization (SO) method to compress the validation
headers of flow packets into one validation information (V I).
For this purpose, firstly, the controller assigns each path a
prime number p and one of p’s primitive element g. These
values are sent to the corresponding OutSwitch node of the
path. Next, we incorporate a validation field ft into the vali-
dation header and modify the validation header initialization
in (2) as

fs s, ft t, fk k � kin, (11)

where t is the timestamp of the switch when the packet
was received. The operations of RelaySwitch nodes remain
unchanged. Upon receiving a packet, the OutSwitch node
updates its corresponding flow’s validation information (V I).
Denote the validation fields of the ith received packet pkti as
f i
s, f i

k and f i
t . The OutSwitch node first updates the validation

fields f i
s, f

i
k using (3) before sending pkti to the destination

host. Subsequently, it updates the local validation information
fields V Is, V Ik and V It as

V Is f i
s, V Ik (g(f

i
k+fi

t)%'(p)%p+ V Ik)%p,

V It (gf
i
t%'(p)%p+ V It)%p,

(12)

where % represents the modulus operator, and V Is, V Ik, and
V It are the fields of V I , which are initialized to zero in the
OutSwitch node. '(p) is the Euler’s totient function [25] of
p, which is utilized to reduce the exponential part in (12),
thereby improving computational efficiency without altering
the computing result.

When the controller needs to validate the path of a net-
work flow, it sends a validation request to the corresponding
OutSwitch node. The OutSwitch node then returns the locally
stored validation information V I to the controller. Upon
receiving V I , the controller computes the field V I 0k as

V I 0k = (V It ⇤ g(�m(s0)�k0)%'(p))%p, (13)

where m represents the number of switches in the path,

�m(s0) =
m�1L
j=1

jL
i=1

s0i, and k0 =
mL
j=1

(k0j � k0inj
). The flow

path validation is expressed as

Validation result =

(
success , if V I 0k = V Ik,

failure, otherwise.
(14)

The above SO method significantly reduces the storage
overhead in the OutSwitch, aligning switch storage overhead
with network flows rather than individual packets. As a result,
it also reduces the switch-to-controller bandwidth consumption
while sending the validation information to the controller.

Correctness Analysis: Due to the space limit, we omit
the detailed analysis, which is similar to the analysis in
Section V-A but leverages the special features of modulus

operation and the Euler’s totient function [25]. To be more
specific, these properties are

(x+ y)%p = (x%p+ y%p)%p, (15)
(x ⇤ y)%p = [(x%p) ⇤ (y%p)]%p, (16)

gx%'(p)%p = gx%p, (17)

where x, y are positive integers, p is a prime number, g
is one of p’s primitive elements, and '(p) is the Euler’s
totient function. Similar to the analysis in Section V-A, the
SO method also has false positives. The probability of false
positives in the SO method is close to 1

p , which is not an issue
when p takes a large value.

C. Path Partition
To support large-scale deployment, we propose a path

partition scheme that divides the path at intersections of
multiple network flow paths. This enables merging and jointly
validating overlapping sub-paths from different flows, thereby
reducing both overall data plane storage overhead and the total
number of paths requiring validation.

Firstly, we select some switches that handle a large number
of network flows as KeySwitch nodes. This can be achieved
by leveraging the controller’s network-wide topology view.
Then, the controller assigns a virtual key, denoted by kv , to
each KeySwitch node. Finally, we use KeySwitch nodes to
partition the transmission paths of network flows. When a
KeySwitch node Si receives a packet pkt of a network flow,
it firstly utilizes (3) to update the validation header of pkt and
utilizes (12) to update the local validation information fields.
Then the KeySwitch node uses kv to initialize the validation
header of pkt before sending it to the next hop:

ft t, fs si, fk ki � kv. (18)

Example 1: We use a simple example to illustrate how path
partitioning can reduce the storage overhead of the data plane.
Consider a star network topology where the central switch
S is connected to m edge switches S1, S2, ..., Sm, and the
hosts connected to these edge switches communicate with
each other. When validating the path for all network flows,
each edge switch needs to validate m� 1 paths. For example,
the switch S1 needs to validate paths S2 ! S ! S1, S3 !
S ! S1, ..., Sm ! S ! S1. The total number of paths
that need to be validated in the data plane is m(m � 1).
By designating the switch S as the KeySwitch node and
partitioning paths at this node, S needs to validate m paths
S1 ! S, S2 ! S, ..., Sm ! S, while each edge switch only
needs to validate one path, e.g., S1 validates path S ! S1.
This way, the total number of paths to be validated is reduced
to 2m. Here, we have two different path validation policies.
The term path validation policy defines which paths or path
segments that need to be validated. We emphasize that the

paths under a path validation policy may not be the same

as the paths used in actual data transmission. For instance,
the paths under the second path validation policy are: {S1 !
S, S2 ! S, . . . , Sm ! S, S ! S1, . . . , S ! Sm}, while the

actual paths used for data transmissions are S2 ! S ! S1

and so on.
We propose a Greedy-based KeySwitch node Selection

algorithm (GKSS) to identify suitable KeySwitch nodes. In-
spired by betweenness centrality [26], we introduce a novel
metric in GKSS known as policy centrality (pc), which reflects
the significance of a switch based on the total number of paths
passing the switch under the current path validation policy.
Let pc(S) denote the number of paths traversing the switch S
under the current path validation policy, i.e.,

pc(S) =
X

(ei,ej)

�ei,ej (S), (19)

where m denotes the total number of edge switches, ei and
ej represent the edge switches (1  i, j  m), and function
�ei,ej (S) returns the number of paths from ei to ej passing
through the switch S under current path validation policy.
GKSS works as follows:

• Step 1: The controller computes the path set P =S
8i,j{Tij}, where Tij denotes the set of paths from the

edge switch ei to ej in the current validation policy.
Define a set S from P by

S = {S|S 2 T , T 2 P}, (20)

where S 2 T means that the path T passes through the
switch S under the current path validation policy. Since
initially P contains all paths, S initially includes all the
switches (because otherwise, the switches not in S will
not be used by any flow). For each switch S 2 S, we use
set TS to record all paths passing S under the current
validation policy:

TS = {T |T 2 P, S 2 T }. (21)

• Step 2: We evaluate the switches in descending order
of their |TS | values to ascertain their suitability as
KeySwitch nodes. Here, |TS | equals the policy centrality
value of S as defined in (19).

• Step 3: We select a switch as a KeySwitch node, one by
one following the descending order in Step 2. We check
if using the selected node as KeySwitch can reduce the
total number of validation paths under the current path
validation policy. If no, do nothing; otherwise, we add it
to the KeySwitch set V, and paths in TS are then removed
from the path set P.

• Step 4: The controller then recalculates sets S and TS .
This means the update of the current path validation
policy. Go to Step 2. Repeat until none of the switches in
S are suitable as KeySwitch nodes. The final KeySwitch
nodes are recorded in set V.

Since using all edge switch pairs in GKSS is computation-
ally costly, we can sample edge switch pairs from the data
plane using a uniform sampling method and use these samples
to estimate the policy centralities of the data plane switches.
The predicted policy centrality of the switch S is represented

S1 S2

Controller

pkt hpkt h

S3 S4 S5
VI1VI1 VI2VI2 VI3VI3 VI4VI4 VI5VI5

Sm

① ②pkt hpkt h

pkt hpkt h
pkt hpkt h

pkt hpkt h pkt hpkt h

Fig. 4. An illustration of anomaly switch localization.

as p̃c(S). As delineated in [27], to attain a prediction approxi-
mation |pc(S)� p̃c(S)|  ✏ with a probability of at least 1��,
the required sample size N must satisfy:

N =
c

✏
(d+ ln

1

�
), (22)

where c is a positive constant, typically set to 0.5, and d
represents the network diameter.

VI. SECURITY ANALYSIS AND ANOMALY SWITCH
LOCALIZATION

A. Security Analysis
A malicious switch may divert packets to alternate routes

instead of the designated path. We assume that the final hop
switch directs packets to the correct port. Otherwise, packets
would not reach their intended destination, which would be
quickly detected by end-to-end transmission protocols.

Path detour: As shown in Fig. 4 by the red dashed lines,
S2 forwards the packet to Sm instead of S3. Subsequently,
Sm transmits the packet to S3. No matter whether or not Sm

follows the validation header update defined by L-PVS, the
path validation in the controller will fail because S3’s header
update has involved an incorrect incoming port.

Switch bypass: As shown in Fig. 4 by the blue dotted
lines, S2 forwards the packet directly to S4, bypassing S3.
Consequently, the validation header lacks information about
S3, resulting in a path validation failure in the controller.

Out-of-order traversal: Suppose that the intended forward-
ing path for a packet is S1 ! S2 ! S3 ! S4 ! S5. However,
the packet follows the path S1 ! S3 ! S2 ! S4 ! S5

instead. Since the order of operands affects the result of the
validation information in (1), the altered switch processing
order results in different values in the validation header,
leading to a path validation failure in the controller.

Path forging: If the switch S2 forwards the packet to switch
Sm, and the packet doesn’t return to the original forwarding
path until the last hop. The altered path will produce distinct
values in the validation header, leading to a path validation
failure in the controller.
B. Anomaly Switch Localization

A path validation failure in the controller indicates that
some packets violated the network forwarding policy. We
utilize temporary KeySwitch (TKeySwitch) nodes to locate

2 4 6 8 10 12 14
Path Length

0.75

0.8

0.85

0.9

0.95

1

G
o
o

d
p

u
t

R
a

tio
 (

%
)

EPIC-L1
OSV
REF-F
L-PVS

Fig. 5. Packet goodput ratio with
the path length (packet payload =
800 bytes).

0 200 400 600 800 1000
Number of Processed Packets

0

10

20

30

40

T
im

e
 T

a
ke

n
 (

m
s)

EPIC-L1
OSV
REV-F
L-PVS

Fig. 6. Extra packet processing
time in a path.

the anomaly switches. Compared with a KeySwitch node, a
TKeySwitch node only cares about packets that belong to a
specific path rather than all packets passing through the switch.

To locate the anomaly switch, the controller sets all the
switches on the anomalous path as TKeySwitch nodes (refer-
ring to S1, S2, S3, S4, S5 in Fig. 4), constructs a test packet
that can be transmitted on this path, and sends it to the first hop
switch. The validation header of the test packet is initialized
and only known to the controller. When a switch receives the
test packet, it updates the packet validation header and the
local validation information using (3) and (12), respectively.
Then it delivers the packet to the next hop while sending
the local validation information (V I) to the controller. The
controller employs (13) and (14) to validate each V I .

In Fig. 4 indicated by the red dashed lines, S2 did not
send the packet to the designated next hop S3 but to Sm

instead. This results in the validation failure of V I3, V I4, V I5
at the controller. Based on the previous analysis, the controller
can locate the anomaly switch as the last switch that has
correct validation information (referring to S2 in Fig. 4).
In the case of switch bypass or path forging, the skipped
switches (referring to S3 in Fig. 4) will not receive the test
packet and will not send their validation information to the
controller. So the controller sets a timer to detect if it has
not received validation information from a TKeySwitch node
within a specified timeout period. The timer can be set to the
sum of the current network’s RTT between the controller and a
TKeySwitch node plus the RTT of the path. Missing validation
information by the timeout indicates a validation failure.

The above process is denoted as a localization round. To
check whether there are more anomaly switches on this path,
the controller extracts a sub-path from the next hop of the
anomaly switch to the last hop switch and starts a new local-
ization round on this sub-path (referring to S3 ! S4 ! S5

in Fig. 4). The process of anomaly localization terminates,
when all information received by the controller is successfully
validated, or when only one switch remains in the sub-path.

VII. IMPLEMENTATION AND EVALUATION

We conduct extensive experiments to evaluate the perfor-
mance of L-PVS. We implement the data plane functions of L-
PVS using Open vSwitch version 2.13.7 [28], while the control
plane functions are implemented in RYU [29]. We emulate2

2We did not use P4 switches for our experiments because the cost is too
high.

300 400 500 600 700
Number of Processed Flows

10

20

30

40

50

T
im

e
 T

a
ke

n
 (

m
s)

REV-F
L-PVS

(a) Validation time with the number
of flows.

1000 1500 2000 2500
Number of Processed Packets

0

5

10

15

20

25

30

T
im

e
 T

a
ke

n
 (

m
s)

REV-F
L-PVS

(b) Validation time with the number
of packets.

Fig. 7. Time taken for path validation in the controller.

2 4 6 8 10
Request Interval (s)

0

2

4

6

8

10

D
e

te
ct

io
n

 D
e

la
y

(s
)

Fig. 8. Average detection delay
with validation request intervals.

2 4 6 8
Time Interval (s)

0

1

2

3

4

5
T

h
ro

u
g

h
p

u
t

(K
p
p

s)

flow number = 500
flow number = 1000
flow number = 1500
flow number = 2000

Fig. 9. Switch-to-controller link
throughput with validation request
intervals.

SDNs on an Ubuntu server with an Intel(R) Xeon(R) Gold
5117 CPU @ 2.00GHz and 32G RAM. We utilize several
topologies from the Internet Topology Zoo [30], an ongoing
project that gathers over 250 real-world network topologies.
The validation header consists of 16 bytes, encompassing fs
with an allocation of 2 bytes, ft with 4 bytes, fk with 8 bytes,
and an extra field len of 2 bytes to signify the length of the
validation header.

A. Validation Header Size Comparison

TABLE II
VALIDATION HEADER SIZE COMPARISON

OSV REV-F EPIC-L1 L-PVS

Size (byte) constant m+ 32 5m+ 8 constant
m = 2 80 34 18 16
m = 6 80 38 38 16
m = 10 80 42 58 16
m = 14 80 46 78 16

We compare the validation header size between L-PVS,
OSV [31], flow-level REV (REF-F) [22], and level 1 EPIC
(EPIC-L1) [4]. The comparison results are presented in Ta-
ble II, where the path length is denoted by m. Using REV-F
as a baseline, L-PVS achieves reductions of 52%, 61%, and
65% in the validation header size for path lengths of 6, 10,
and 14 hops, respectively. The comparison results of the packet
goodput ratio3 are shown in Fig. 5. Overall, L-PVS has the

smallest validation header size and achieves the highest

packet goodput ratio.

3The packet goodput ratio is defined as the ratio of payload size over the
total size of the payload and validation header. Here, the payload is a general
term referring to all content in the packet excluding the validation header.

B. Processing Delay Comparison
1) Extra Packet Processing Delay in a Path: During the

packet forwarding process, updating the validation header re-
quires extra packet processing time in the switch. We compare
the extra packet processing time of different schemes under
the same hardware environment. In L-PVS, the time includes
updating the validation header and storing the validation
headers locally. The path length is set to 10 (similar results
were observed for other path lengths), and the prime number
p in L-PVS is set to 1000003, ensuring a false positive rate
lower than 1

106 .
The comparison results in Fig. 6 demonstrate that our

method surpasses so far the fastest path validation scheme
by achieving about 25% reduction in validation header

processing time when considering 1000 processed packets.
The observed improvement is due to our method’s use of an
exponentiation-and-modulo operation at the last hop switch
and leveraging Euler’s totient function for faster validation
processing. In contrast, encryption-based methods need en-
cryption at every hop, increasing computational overhead and
time consumption.

2) Time Consumption in the Controller: We compare the
validation time consumption in the controller between L-PVS
and REV-F. We do not consider EPIC and OSV since they are
designed for traditional networks that do not have a controller.
The path length is set to 10. Fig. 7(a) shows that the validation
time varies with the number of network flows, each with
10 packets. Fig. 7(b) shows that the validation time varies
with the number of packets when the number of flows is set
to 500. The results demonstrate that our method is faster.
This is because our SO method precomputes the validation
information in the data plane, and the precomputed results can
be directly used by the controller in the validation process,
improving the validation speed. In addition, with the SO
method, the controller only needs to perform path validation
once for each flow path. The utilization of Euler’s totient
function also helps in improving the computation speed.

C. Ablation Study
1) Impact of Validation Request Interval on Detection De-

lay and Switch-to-Controller Link Throughput: Fig. 8 shows
that the average controller detection delay increases with
longer request intervals. Fig. 9 demonstrates a decrease in
switch-to-controller link throughput with longer request in-
tervals, attributed to fewer requests per unit time due to our
polling-based validation request from the data plane.

2) Impact of Path Partitioning on Data Plane Storage
Overhead: Fig. 10 presents the storage overhead of the entire
data plane under three scenarios: without path partition (With-
out GKSS), utilizing sampled edge switch pairs to compute
KeySwitch nodes (With GKSS), and utilizing all switch pairs
to compute KeySwitch nodes (Optimal). We used Chinanet,
Cynet, IBM, and Oxford topologies [30], and calculated the
diameters of these topologies using the method proposed
in [27]. We assign one host to each switch and enable them
to communicate with each other to generate network flows.

Chinanet Oxford Ibm Cynet
Topology

0

1

2

3

4
S

to
ra

g
e

 O
ve

rh
e

a
d

 (
B

yt
e

s)
104

Without GKSS
With GKSS
Optimal

Fig. 10. The storage overhead of
the data plane.

Chinanet Oxford Cynet Ibm
Topology

0

500

1000

1500

2000

N
u

m
b

e
r

o
f

P
a

th
s

Without Sampling
With Sampling

Fig. 11. The number of paths
required to compute KeySwitch
nodes.

0.06 0.08 0.1 0.12 0.14
Predicting Approximation

100

110

120

130

N
u
m

b
e
r

o
f
P

a
th

s

1- = 0.98
1- = 0.96
1- = 0.94
1- = 0.92
1- = 0.9

Fig. 12. The number of paths with
sampling parameters.

1000 1500 2000 2500 3000
Number of Processed Packets

0

5

10

15

20

25

T
im

e
 T

a
ke

n
 (

m
s)

L-PVS (1e4)
L-PVS (1e5)
L-PVS (1e6)
L-PVS (1e7)
L-PVS (1e8)

Fig. 13. Extra packet processing time.
“L-PVS (1e4)” means that the prime
value p is set to the smallest prime
number greater than 104.

30 40 50 60
Number of Flows

2000

4000

6000

8000

10000

12000

S
to

ra
g

e
 O

ve
rh

e
a
d

 (
B

yt
e
s) Without SO

With SO

(a) Storage overhead with the num-
ber of flows, each with 10 packets.

100 150 200 250
Number of Packets

1000

2000

3000

4000

5000

6000

S
to

ra
g

e
 O

ve
rh

e
a
d

 (
B

yt
e
s) Without SO

With SO (30)
With SO (60)
With SO (90)

(b) Storage overhead with the num-
ber of packets. “With SO (30)”
means that we adopted SO and the
number of network flows is 30.

Fig. 14. Storage overhead of the OutSwitch node.

The predicting approximation ✏ and predicting accuracy 1� �
in (22) is set to 0.05 and 0.99, respectively. The results shown
in Fig. 10 suggest that our path partitioning method can
significantly reduce the data plane storage cost.

3) Benefit of Sampling in GKSS: Fig. 11 displays the
number of paths required in the GKSS algorithm with and
without the sampling method. The predicting approximation
✏ is set to 0.05 and the predicting accuracy 1 � � is set
to 0.99. The results in Fig. 11 indicate that the sampling
method can significantly reduce the number of paths required
in GKSS. Fig. 10 indicates that the sampling-based GKSS
approach achieves comparable storage overhead to the optimal
GKSS approach. Combining Figs. 10 and 11, we can conclude
that the sampling method reduces the computation overhead
without obvious degradation in path partition performance.

Fig. 12 shows the number of paths that need to be validated
for different predicting accuracies (1 � �) and different pre-
dicting approximations (✏) over the Oxford topology. We omit
the results for other topologies to save space but point out that
other topologies lead to a similar trend. The results indicate
that the number of required paths is mainly determined by
the predicting approximation ✏, while the impact of predicting
accuracy 1� � is not significant.

4) Impact of Different Prime Values (p) on Extra Packet
Processing Time: Fig. 13 shows the extra packet processing
time in an OutSwitch node with different prime values. A
larger p offers a lower false positive rate but results in longer
validation information processing time. The results in Fig. 13
indicates that L-PVS (1e6) can achieve low extra packet
processing delay and low false positive rate simultaneously.

5) Impact of Storage Optimization (SO): Fig. 14(a) shows
that the storage overhead increases with increased number
of network flows. Fig. 14(b) demonstrates how the storage
overhead varies with the number of processed packets. From
the two figures, we conclude that SO leads to significant
storage savings in the OutSwitch node. This is attributed to
the precomputation of validation information by the OutSwitch
node during the SO process, which compresses all validation
headers within a network flow into one validation information.
In other words, with SO, the storage cost is purely determined
by the number of flows rather than the number of packets.

VIII. CONCLUSION

We have presented L-PVS, a novel approach for path
validation in SDN, which offers several key features to en-
hance the path validation process: (1) Constant validation

header– This is achieved through the utilization of a novel
asymmetric additive operation. (2) Path validation at the

flow level– Building upon packet path validation, we extended
our approach to network flow path validation by temporarily
storing the validation information at the last hop switch along
the path. To reduce storage cost at the last hop switch, we
proposed a storage optimization (SO) method, which retains
only one compressed validation information for each network
flow path rather than storing information for each individual
packet path. (3) Path partitioning– This method enables
concurrent validation of multiple overlapping paths, reduc-
ing switching storage overhead overall. To identify suitable
switches for path partitioning, we proposed GKSS, a greedy-
based method and designed a sampling technique that further
reduces the computational overhead of GKSS. (4) Anomaly

switch localization– We have proposed a method to locate
anomaly switches when path validation fails at the controller.

Compared to the baselines, L-PVS consumes a constant
storage overhead in the data plane and a constant verification
cost in the controller for a network flow. It achieves reductions
of 52%, 61%, and 65% in the validation header size for path
lengths of 6, 10, and 14 hops, respectively. Furthermore, L-
PVS surpasses the existing fastest path validation scheme by
achieving a 25% reduction in validation header processing
time during the transmission process when considering a path
length of 10 and 1000 processed packets.

REFERENCES

[1] G. Chalhoub and A. Martin, “But is it exploitable? exploring how router
vendors manage and patch security vulnerabilities in consumer-grade
routers,” in Proceedings of the 2023 European Symposium on Usable
Security, Copenhagen, Denmark. ACM, 2023, pp. 277–295.

[2] Y. Zhang, W. Huo, K. Jian, J. Shi, H. Lu, L. Liu, C. Wang, D. Sun,
C. Zhang, and B. Liu, “Srfuzzer: an automatic fuzzing framework for
physical SOHO router devices to discover multi-type vulnerabilities,”
in Proceedings of the 35th Annual Computer Security Applications
Conference , San Juan, PR, USA. ACM, 2019, pp. 544–556.

[3] K. Bu, A. Laird, Y. Yang, L. Cheng, J. Luo, Y. Li, and K. Ren,
“Unveiling the mystery of internet packet forwarding: A survey of
network path validation,” ACM Comput. Surv., vol. 53, no. 5, pp. 104:1–
104:34, 2021.

[4] M. Legner, T. Klenze, M. Wyss, C. Sprenger, and A. Perrig, “EPIC:
every packet is checked in the data plane of a path-aware internet,” in
29th USENIX Security Symposium, 2020, pp. 541–558.

[5] J. Naous, M. Walfish, A. Nicolosi, D. Mazières, M. Miller, and
A. Seehra, “Verifying and enforcing network paths with icing,” in
Proceedings of ACM CoNEXT, Tokyo, Japan, 2011, pp. 30–42.

[6] T. H. Kim, C. Basescu, L. Jia, S. B. Lee, Y. Hu, and A. Perrig,
“Lightweight source authentication and path validation,” in ACM SIG-
COMM 2014 Conference, Chicago, IL, USA, 2014, pp. 271–282.

[7] A. He, K. Bu, Y. Li, E. Chida, Q. Gu, and K. Ren, “Atomos: constant-
size path validation proof,” IEEE Trans. Inf. Forensics Secur., vol. 15,
pp. 3832–3847, 2020.

[8] B. Wu, K. Xu, Q. Li, Z. Liu, Y. Hu, M. J. Reed, M. Shen, and F. Yang,
“Enabling efficient source and path verification via probabilistic packet
marking,” in 26th IEEE/ACM IWQoS, Banff, Canada, 2018, pp. 1–10.

[9] A. He, X. Li, J. Fu, H. Hu, K. Bu, C. Miao, and K. Ren, “Hummingbird:
Dynamic path validation with hidden equal-probability sampling,” IEEE
Trans. Inf. Forensics Secur., vol. 18, pp. 1268–1282, 2023.

[10] B. Hu, Y. Bi, M. Zhi, K. Zhang, F. Yan, Q. Zhang, and Z. Liu, “A
deep one-class intrusion detection scheme in software-defined industrial
networks,” IEEE Trans. Ind. Informatics, vol. 18, no. 6, pp. 4286–4296,
2022.

[11] N. Feamster, J. Rexford, and E. W. Zegura, “The road to SDN: an
intellectual history of programmable networks,” Comput. Commun. Rev.,
vol. 44, no. 2, pp. 87–98, 2014.

[12] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present,
and future of programmable networks,” IEEE Commun. Surv. Tutorials,
vol. 16, no. 3, pp. 1617–1634, 2014.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM computer communication review,
vol. 38, no. 2, pp. 69–74, 2008.

[14] M. Antikainen, T. Aura, and M. Särelä, “Spook in your network:
attacking an SDN with a compromised openflow switch,” ser. Lecture
Notes in Computer Science, vol. 8788, 2014, pp. 229–244.

[15] P. Chi, C. Kuo, J. Guo, and C. Lei, “How to detect a compromised
SDN switch,” in Proceedings of the 1st IEEE Conference on Network
Softwarization, NetSoft, London, United Kingdom, 2015, pp. 1–6.

[16] C. Pang, Y. Jiang, and Q. Li, “FADE: detecting forwarding anomaly in
software-defined networks,” in ICC, Kuala Lumpur, Malaysia, 2016, pp.
1–6.

[17] Q. Li, Y. Liu, Z. Liu, P. Zhang, and C. Pang, “Efficient forwarding
anomaly detection in software-defined networks,” IEEE Trans. Parallel
Distributed Syst., vol. 32, no. 11, pp. 2676–2690, 2021.

[18] P. Zhang, F. Zhang, S. Xu, Z. Yang, H. Li, Q. Li, H. Wang, C. Shen, and
C. Hu, “Network-wide forwarding anomaly detection and localization
in software defined networks,” IEEE/ACM Trans. Netw., vol. 29, no. 1,
pp. 332–345, 2021.

[19] T. Sasaki, C. Pappas, T. Lee, T. Hoefler, and A. Perrig, “Sdnsec:
forwarding accountability for the SDN data plane,” in 25th Interna-
tional Conference on Computer Communication and Networks, ICCCN,
Waikoloa, HI, USA, 2016, pp. 1–10.

[20] S. Xi, K. Bu, W. Mao, X. Zhang, K. Ren, and X. Ren, “Ruleout
forwarding anomalies for SDN,” IEEE/ACM Trans. Netw., vol. 31, no. 1,
pp. 395–407, 2023.

[21] P. Zhang, “Towards rule enforcement verification for software defined
networks,” in INFOCOM, Atlanta, USA, 2017, pp. 1–9.

[22] P. Zhang, H. Wu, D. Zhang, and Q. Li, “Verifying rule enforcement in
software defined networks with REV,” IEEE/ACM Trans. Netw., vol. 28,
no. 2, pp. 917–929, 2020.

[23] A. Nehra, M. Tripathi, and M. S. Gaur, “Global view in sdn: existing
implementation, vulnerabilities & threats,” in Proceedings of the 10th
International Conference on Security of Information and Networks, SIN,
Jaipur, IN, India, 2017, pp. 303–306.

[24] F. M. LEWIN. (2012) All about xor. [Online]. Available: https:
//accu.org/journals/overload/20/109/lewin 1915/

[25] B. Kaliski, “Euler’s totient function,” in Encyclopedia of Cryptography
and Security, 2nd Ed, 2011, p. 430.

[26] T. Hayashi, T. Akiba, and Y. Yoshida, “Fully dynamic betweenness
centrality maintenance on massive networks,” Proc. VLDB Endow.,
vol. 9, no. 2, pp. 48–59, 2015.

[27] M. Riondato and E. M. Kornaropoulos, “Fast approximation of between-
ness centrality through sampling,” Data Min. Knowl. Discov., vol. 30,
no. 2, pp. 438–475, 2016.

[28] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of Open vSwitch,” login Usenix Mag.,
vol. 40, no. 2, 2015.

[29] R. P. Team et al., RYU SDN Framework-English Edition. RYU project
team, 2014. [Online]. Available: https://ryu.readthedocs.io/en/latest/

[30] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765–1775, 2011.

[31] H. Cai and T. Wolf, “Source authentication and path validation in
networks using orthogonal sequences,” in 2016 25th International Con-
ference on Computer Communication and Networks (ICCCN). IEEE,
2016, pp. 1–10.

