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Abstract—Given the high cost associated with directly measur-
ing the traffic matrix (TM), researchers have dedicated decades to
devising methods for estimating the complete TM from low-cost
link loads by solving a set of heavily ill-posed linear equations.
Today’s increasingly intricate networks present an even greater
challenge: the routing matrix within these equations can no
longer be deemed reliable. To address this challenge, we, for
the first time, employ a flow-based generative model for TM
estimation by establishing an invertible correlation between TM
and link loads, oblivious of the routing matrix. We demonstrate
that the lost information within the ill-posed equations can be in-
dependently segregated from the TM. Our model collaboratively
learns the invertible correlations between TM and link loads as
well as the distribution of the lost information. As a result, our
model can unbiasedly reverse-transform the link loads to the
true TM. Our model has undergone extensive experiments on
two real-world datasets. Surprisingly, even without knowledge of
the routing matrix, it significantly outperforms six representative
baselines in deterministic and noisy routing scenarios regarding
estimation accuracy and distribution similarity. Particularly, if
the actual routing matrix is absent, our model can improve the
performance of the best baseline by 41% ∼ 58%.

Index Terms—Traffic matrix estimation, Network tomography,
Flow-based generative model

I. INTRODUCTION

In an era of exponentially increasing data traffic and the
advent of technologies like cloud computing and edge comput-
ing, it has become imperative to enhance network observability
for efficient management, optimization, and security. A key
metric in network observability is the traffic matrix, delineat-
ing traffic volumes between all origin-destination (OD) pairs
within the network. This matrix is an invaluable resource in
understanding traffic status, aiding in various network manage-
ment tasks from traffic engineering [1], anomaly detection [2],
to capacity planning [3]. While the evolution of software-
defined network (SDN) [4] architecture can quantify specific
OD flows at programmable routers, direct network-wide OD
flow measurement is typically impractical due to prohibitive
costs. As the network expands, the network-wide OD flows
surge exponentially. Frequently measuring these flows not
only consumes vast amounts of expensive ternary content-
addressable memory (TCAM) in routers, but also disrupts
other network operations [5]. Thus, there is a pressing need for
methodologies to estimate the traffic matrix without relying on
direct network-wide measurements.

Currently, two orthogonal techniques have been devised for
this purpose: matrix/tensor completion and network tomogra-

phy (NT). The matrix/tensor completion-based methods mea-
sure partial OD flows and recover the missing ones by lever-
aging the spatio-temporal correlations between OD flows [6]
[7]. Conversely, NT-based methods bypass flow measurements
and estimate the complete traffic matrix from router port link
load statistics [8] [9]. Each method has its cons and pros,
and no conclusive evidence suggests that one outperforms the
other. However, it’s widely accepted that the performance of
matrix/tensor completion-based methods depends heavily on
the quantity and distributivity of the measurements. If the
number of measured flows is inadequate or not sufficiently
representative, the accuracy of matrix/tensor completion-based
methods may be compromised.

The merits of NT-based methods are straightforward. Since
link loads have significantly lower dimensions and can be col-
lected efficiently using simple network management protocol
(SNMP) tools at minimal cost, link load measurements can be
executed frequently without occupying router TCAMs. This
implies that if the complete traffic matrix can be accurately
inferred from low-cost link loads, traffic matrix information
can be monitored in real-time and measurement granularity
can be refined.

Nevertheless, the NT-based methods have an inherent dif-
ficulty in solving a rank-deficient linear system. To briefly
explain the reason while deferring the detailed problem for-
mulation to Section III-A, we denote X as the flow vector
formed from TM and Y as the vector of link loads. Then X
and Y should satisfy a group of linear equations, i.e.,

AX = Y, (1)

where A is the routing matrix of flows in TM. However, the
linear system (1) is generally rank-deficient, with innumerable
solutions for X . In other words, information loss exists when
transforming the high-dimensional X to the low-dimensional
Y through routing matrix A. To compensate for the lost infor-
mation, traditional TM estimation methods impose additional
assumptions on TM, which may not always hold in practice,
to obtain a unique solution [8] [10]. Recently, with the rapid
emergence of deep learning (DL) techniques [11], a few works
leverage DL models to learn the traffic feature from historical
data and then search for the optimal solution of (1) that can
best satisfy the learnt feature [12] [13] [14]. Almost all existing
NT solutions, including the DL-based ones, assume that the
routing matrix A is known or at least partially known.



This assumption serves as a cornerstone in enabling NT-
based traffic estimation. However, this foundation comes under
scrutiny with the increasing adoption of adaptive routing
policies in modern computer systems to balance network
loads. Configured with an adaptive routing policy, routers
often choose routing paths dynamically based on current
network loads. This implies a lack of precise knowledge
of the actual routing matrix A, as represented in Eqn. (1).
While some recent studies have explored solving NT-based
problems using a probabilistic routing matrix [15], obtaining
exact routing probabilities under an adaptive routing policy
remains an unresolved challenge since the probabilities may be
driven purely by traffic load. Therefore, a significant question
emerges: Can we conduct NT-based traffic estimation if we
completely dismiss this fundamental assumption?

Novelty: This paper provides a positive answer to this
fundamental question. Instead of forcing the estimation of TM
to satisfy the equations (1) with routing matrix A, we aim to
learn a bijective correlation between TM and link loads when
the routing matrix is absent. The “bijective” means that the
TM is unique given an instance of link loads. Nevertheless,
we still need to break the barrier of information loss between
TM and link loads. Rather than exploring the traffic feature to
compensate for the lost information, we propose to separate
the lost information from TM and purposefully learn such
lost information through a designed model. To achieve this
goal, we first demonstrate that TM can be decomposed into
two orthogonal components XA and XN under an unknown
routing matrix A. Then, we show that the two orthogonal
components are one-to-one correspondence1 to link loads Y
and a latent vector Z, respectively. Due to the “orthogonality”
of the two components, the variations of Y will not affect the
distributions of Z, which provides us an opportunity to design
a DL-based model to collaboratively learn the feature of Z
while approaching the bijective function between X and Y .

Following the above novel idea, we develop a new TM
estimation method, named FlowTM, based on flow-based
generative models [16] [17], which were originally proposed
to transform a simple distribution to a complex distribution.
What sets the flow-based generative model apart from other
DL models is its unique ability to maintain a bijective trans-
formation, implying no information loss occurs during the
transformation. Capitalizing on this capability, we design a
flow-based learning network that can approach an invertible
transformation from TM to link loads while capturing the lost
information with a designed loss function. To the best of our
knowledge, this is the first time that a flow-based model has
been utilized to address the TM estimation problem. It is a
compelling discovery that FlowTM can significantly elevate
the current state-of-the-art TM estimation accuracy, even in
the absence of the routing matrix.

In summary, this paper makes the following contributions
to the field of NT-based TM estimation.

1One-to-one correspondence means given an instance of Y (or Z) XA (or
XN ) can be uniquely determined.

(1) We demonstrate that the lost information in the Traffic
Matrix (TM) is separable. By first decomposing the
TM into two orthogonal components, we identify one
component with a one-to-one correspondence to the link
loads, while the other corresponds to the lost information.
Based on the separation, we provide theoretical proof that
the invertible transformation from TM to link loads can
be learned unbiasedly, even without knowledge about the
routing matrix.

(2) We introduce a novel flow-based TM estimation model,
FlowTM, that effectively estimates the TM from low-
cost link loads. The model comprises an embedding
network and a flow-based network. The embedding net-
work scales the TM for processing without altering its
original feature, while the flow-based network targets the
invertible transformation from the embedding to the link
loads, simultaneously learning the distribution of the lost
information.

(3) We compared FlowTM with six representative baselines
using two real-world datasets. Even without knowledge
of the routing matrix, FlowTM significantly outperforms
all baselines in deterministic and noisy routing scenarios
regarding estimation accuracy and distribution similarity.

II. RELATED WORK

TM estimation has been widely studied over two
decades [18] and still attracts much attention in recent years
due to its significant practical meaning. Existing methods can
be roughly classified into two distinct categories.

The first category uses partial TM measurements to recover
the missed flows in TM based on matrix/tensor completion [6]
[7] [19] [20]. These methods suppose TM has a low rank due
to the spatio-temporal correlations among flows and use matrix
decomposition (such as SVD decomposition) or principal
component analysis (PCA) to recover the missing volumes
based on the known volumes in TM [21]. Zhang et al. [6]
proposed a sparsity regularized SVD method to estimate the
missing values by matrix factorization. Roughan et al. [22]
improved [6] by proposing sparsity regularized matrix factor-
ization (SRMF). Xie et al. [19] [20] [23] [24] proposed tensor
completion approaches to recover the missing measurements
based on Tucker decomposition. The method proposed in [7]
used a GAN-based model to learn the spatio-temporal structure
of TM and recovered the missed flows based on the learned
structure. However, the cost of these methods may be high
as the estimation accuracy depends on the number of known
flows in TM. When the number of known flows is low, or
the spatial-temporal structure is insignificant, the accuracy of
these methods would suffer. NeuTomography [25] employs
deep neural networks-based “NT” and operates without a
routing matrix, but it significantly differs from our approach.
NeuTomography learns the correlations between OD pairs and
path performance metrics, utilizing end-to-end measurements
of partial OD pairs. Consequently, although it bears the name
NeuTomography, its methodology aligns more closely with
matrix/tensor completion techniques.



The second category is network tomography (NT) based
methods, which estimate TM from the link loads by solving
the linear equations in Eqn (1) [10]. Since the linear system is
generally rank deficient, traditional NT-based methods impose
additional assumptions on the TM to obtain a unique solution.
For example, Vardi [10] assumed that the traffic followed
Poisson distribution, and Zhang et al. [8] imposed a gravity
model on the TM. The accuracy of these methods heavily
relies on the reliability of these assumptions.

Recently, a few works proposed to use DL models to
automatically learn the traffic feature of TM from a group
of training data and search for an optimal solution to Eqn. (1)
that satisfies the learnt feature [12] [14]. Jiang et al. [26] first
introduced a typical DL model with linear and sigmoid layers
to learn the inverse mapping from link loads to OD flows.
MNETME proposed in [27] improved the former methods by
extending the inputs to incorporate the routing information and
adjusting the outputted TM to be consistent with Eqn. (1).
The method in [12] used a variational autoencoder (VAE)
to learn the latent distribution that is “similar” to TM. It
then generated an estimated TM with the learned distribution
and adjusted the outputs by Eqn. (1). The method proposed
in [28] estimated the OD flows that can satisfy both the linear
equations and a particular distribution learned by generative
adversarial networks (GAN). Compared with traditional TM
estimation methods, DL-based methods show state-of-the-art
performance on TM estimation without requiring any distri-
bution or structural assumptions. Nevertheless, as mentioned
above, almost all NT-based methods can only work well under
predefined and static routing information, which is unrealistic
in modern computer networks.

The flow-based generative model was first proposed to
transform a simple distribution into a complex distribution [16]
[17] [29]. As the transformation is invertible, the flow-based
model can preserve all information on the distribution during
the transformation. With this powerful ability, flow-based
models have been widely applied in various applications. For
example, Kumar et al. [30] designed a flow-based model for
video prediction. Prenger et al. [31] used a flow-based model
for speech synthesis. Xiao et al. [32] leveraged a flow-based
model for image rescaling.

Different from all the above works, in this paper, we
design a novel flow-based model (named FlowTM) for TM
estimation. It approaches the invertible transformation from
the complex TM to low-cost link loads even when the routing
matrix is absent.

III. PROBLEM AND BACKGROUND

A. Problem Formulation

We consider a backbone network G(V,E) with |V | end
nodes and |E| directed links. The traffic matrix between all
end nodes can form a |V | × |V | matrix X, whose entry xij
denotes the traffic flow from the i-th node to the j-th node. To
facilitate calculations, the traffic matrix X is often reshaped
by a vector X = {x1, x2, . . . , xn} ∈ Rn×1, where n = |V | ×
|V |. Let Y = {y1, y2, . . . , ym} ∈ Rm×1 denote the vector

of link loads which can be obtained through SNMP tools.
A ∈ Rm×n represents the routing matrix. With a deterministic
routing policy, each entry aij of A has a binary value (1 or
0). If the j-th flow traverses the i-th directed link, aij = 1;
otherwise, aij = 0. For the network with probabilistic routing
policy, the aij value is within the [0, 1] range, representing
the probability that the j-th flow may traverse the i-th link.
As mentioned earlier, an increasing number of networks apply
adaptive routing policies, and thus, the true routing matrix is
often unknown. Since in most cases the number of flows n
is much greater than the number of link loads m, the linear
system is highly rank-deficient.

The problem we aim to address in this paper is: given a
group of historical measurements for TM X and link loads
Y , learn an invertible transformation from X to Y when the
routing matrix A is absent.

B. Flow-Based Generative Network

The principle of the flow-based generative model is built on
the change of variable theorem [33]. Suppose z is a random
variable with distribution q(z) and x = f(z) is an invertible
function that connects variables z and x. Then, it is possible
to compute the probability density function of x by

p(x) = q(z)|det(dz
dx

)| = q(f−1(x))|det(df
−1

dx
)|, (2)

where det(df
−1

dx ) is the determinant of the Jacobian matrix of
f−1(x). Eqn. (2) indicates if the mapping function x = f(z)
is bijective, the distributions of x and z can be transformed to
each other.

It is impractical to use just one mapping function to trans-
form a simple distribution into a complex one. Flow-based
model applies normalizing flows to transform the distribution
step by step using a sequence of functions {f1, f2, . . . , fK}:

qi(zi) =qi−1(zi−1)|det(
f−1
i

dzi
)| (3)

=qi−1(zi−1)
1

|det( dfi
dzi−1

)|
.

Taking logarithm on both sides, Eqn. (3) is equivalent to

log qi(zi) = log qi−1(zi−1)− log |det( dfi
dzi−1

)|. (4)

Finally, the complex distribution p(x) can be computed by

log p(x) = log q0(z0)−
K∑
i=1

log |det( dfi
dzi−1

)|. (5)

To ensure Eqn. (5) is computable, two conditions must be
satisfied: (1) all mapping functions should be invertible; (2)
the determinants of the Jacobian matrices should be easy to
compute.

One of the most classical models for normalizing flows is
Real-valued Non-Volume Preserving (RealNVP) [17], which
formulates the transformation functions by a sequence of affine
coupling layers. The input of the affine coupling layer zl ∈ RD



is split into two parts: zl1:d and zld+1:D, which undergo the
additive affine transformations:

zl+1
1:d = zl1:d, (6)

zl+1
d+1:D = zl ⊙ exp(s(zl1:d)) + t(zl1:d),

where s(·) and t(·) can be arbitrary functions and ⊙ denotes
element-wise product. The inverse transformation of Eqn. (6)
is straightforward:

zl1:d = zl+1
1:d , (7)

zld+1:D = (zl+1
d+1:D − t(zl1:d))⊙ exp(−s(zl1:d)).

The Jacobian matrix is a lower triangular matrix:

J =

[
Id Od×D−d

∂zl+1
d+1:D

∂zl
1:d

diag(exp(s(zl1:d)))

]
. (8)

Hence, the determinant of the Jacobian matrix can be easily
computed by the production of the diagonal.

IV. METHODS

We first demonstrate that the lost information in Eqn. (1)
can be separated from TM. Then, we present the design of
FlowTM that correlates TM with link loads by invertible neu-
ral networks while purposefully learning the lost information
by a latent vector.

A. Orthogonal Decomposition of TM

... ... ...

...

...

Lost information

Fig. 1. The orthogonal decomposition of TM: X can be decomposed into XA

and XN which are orthogonal to each other. XA is one-to-one correspondence
to Y while XN is the lost information that can be one-to-one correspondence
to a latent Z.

Before decomposing the TM X , we first decompose
the routing matrix A through singular value decomposition
(SVD).

A = UΣVT , (9)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices,
Σ ∈ Rm×n is a rectangular diagonal matrix with positive sin-
gular values of A in a descending order. Let r denote the rank
of matrix A. According to the properties of SVD, the orthogo-
nal matrix V = [Ψ,Φ], where Ψ = {ψ1, ψ2, . . . , ψr} ∈ Rn×r

is the group of the orthogonal basis for the row space of A
while Φ = {ϕ1, ϕ2, . . . , ϕn−r} ∈ Rn×(n−r) is the orthogonal
basis for the null space of A. We represent the null space of
A by N ≜ Null(A), where ∀N ∈ N , it has AN = 0.

Theorem 1: Given a matrix A ∈ Rm×n, ∀X ∈ Rn×1, we
can decompose X by X = XA +XN , where XA = ΨΨTX
and XN = ΦΦTX , XA and XN are orthogonal to each other.

Proof: First, XA and XN are orthogonal because Ψ and Φ
are orthogonal:

XT
A ·XN =(ΨΨT ·X)T · ΦΦT ·X (10)

=XT ·Ψ(ΨTΦ)ΦT ·X = 0.

Second,

XA +XN =ΨΨTX +ΦΦTX (11)

=(ΨΨT +ΦΦT ) ·X
=VVT ·X = X. □

The orthogonal decomposition of X can be considered
as mapping X onto two orthogonal space span(ΨΨT ) and
span(ΦΦT ), respectively. XA and XN can be considered as
the images of X on the two spaces, respectively. Next, we
demonstrate that the information of XA and XN can be exactly
encoded in link loads Y and a latent vector Z, respectively.

Theorem 2: For matrix A ∈ Rm×n with rank r and X ∈
Rn×1, if Y = AX and Z = ΦTX , where Y ∈ Rm×1 and
Z ∈ R(n−r)×1, respectively, then vector XA is one-to-one
correspondence to Y while XN is one-to-one correspondence
to Z.

Proof: Since X = XA +XN , we left multiply both sides
of the equation by A, then

AX = AXA +AXN (12)

As XN = ΦΦTX , and Φ is the group of basis for null space
N , we have AXN = AΦΦTX = 0. Therefore,

AXA = AX = Y. (13)

Decomposing A by SVD, Eqn. (13) can be written by

Y = AXA = UΣVTXA (14)

Recall that VT = [Ψ,Φ]. As ΨTΨ = 1, and ΦTΨ = 0,
Eqn. (14) can be rewritten by[

Σ−1
≤rU

T
≤r · Y

O(n−r)×1

]
=

[
Σ−1

≤rȲ

O(n−r)×1

]
= VTXA, (15)

where Σ≤r ∈ Rr×r is the diagonal matrix with the r positive
singular values of A, and Σ−1

≤r is its inverse matrix. UT
≤r ∈

Rr×m is the first r rows of UT . O(n−r)×1 is an all-zero vector.
It is clear that as VT has a full rank, XA and Ȳ = UT

≤rY
are bijective through Eqn. (15). Next, we prove Y and Ȳ are
also bijective.

Similar with V, UT = [Ψ′,Φ′], where Ψ′ = UT
≤r is a group

of orthogonal basis for the column space of A, and Φ′ is the
basis for the null space Null(AT ). Because for all possible
X , Y always lies in the column space of A. Therefore, we
have

UTY =

[
Ψ′Y
Om−r

]
=

[
Ȳ

Om−r

]
. (16)

As UT has a full rank, Y and Ȳ are bijective, which means
Y is one-to-one correspondence to both Ȳ and XA.



Similarly, we left multiply both sides of X = XA+XN by
ΦT , then

ΦTX = ΦTXA +ΦTXN = ΦTXN = Z (17)

We decompose ΦT by ΦT = U′Σ′V′T . As the rank of ΦT is
n− r, there are n− r non-zero singular values in Σ′. As the
null space of ΦT is span(Ψ), we have V′ = [Φ,Ψ]. Therefore,
Eqn. (17) can be rewritten by[

Σ
′−1
≤n−rU

′T · Z
Or×1

]
= V′TXN , (18)

where Σ′
≤n−r is the first n − r columns of Σ′ with n − r

positive singular values of N , and Σ
′−1
≤n−r is the inverse. As

V′ and U′ have full ranks, Z and XN in Eqn. (18) are one-
to-one correspondence.□

According to Theorem 1 and Theorem 2, the two orthogonal
components of X can be exactly encoded into the link load
vector Y and the latent vector Z, respectively. That means
when transforming TM into the link loads, Z owns all lost
information in Eqn. (1). Due to the “orthogonality” of the
two components, the variations on Y will not affect the
assignments of Z. Next, a flow-based TM estimation model
(FlowTM) is designed based on the decomposition of X .

B. Overview

...

Traffic Matrix

Encoder
E

...

Decoder
D

Flow-Based Network

...

...

Link Loads

Latent Vector
(Lost Information)

Forward Backward

Embedding Network 

...Coupling
Layer

Coupling
Layer

Coupling
Layer

F

Fig. 2. Framework of FlowTM: FlowTM includes an embedding network
and a flow-based network. With the designed loss function, FlowTM collab-
oratively approaches the bijective correlation between Y and X and learns
the lost information Z.

The flow-based TM estimation model (FlowTM) framework
is presented in Fig. 2. FlowTM comprises two networks: an
embedding network composed of an encoder E and a decoder
D, and a flow-based network F . The embedding network
embeds the TM data onto an accessible learning scale while
the flow-based network learns the invertible transformation
from the embedded vector to the link loads. Note that, the
dimension of the latent vector Z is set to n − m instead of
n−r in FlowTM to ensure the input and output have the same
dimensions. Actually, under a relatively complex routing (e.g.
probabilistic or adaptively routing), the number of link loads
m is usually equal to or slightly bigger than the rank of routing
matrix r. The dimension difference (if any) between n − m
and n− r has little impact on the learning results for Z.

In the forward process, TM X is firstly inputted into
the encoder D. Then D outputs an embedding vector X ′,
and feeds it to the flow-based network F . Afterwards, F
transforms X ′ into the link load Y and a sample of Z through

multiple coupling layers. In the backward process, the link
load Y accompanied by a sample from the latent distribution is
inputted into the right side of F . Then, F inversely transforms
Y into the embedding X ′. Finally, the embedding network
recovers the TM X from X ′ through decoder D.

Next, we will explain three key designs that ensure the
good performance of FlowTM: (1) The embedding network
mitigates the skewness of TM while keeping its original
features; (2) The flow-based network approaches an invertible
transformation while learning the lost information; (3) Train-
ing with designed loss function ensures the lost information
are learnable when the routing matrix is absent.

C. Embedding Network

Different from images, the TM data presents extremely
skewed values, which will easily cause oversized parameters
in the flow-based network. The most common way to mitigate
the skewness of data is normalization or centralization (such as
Min-Max or Z-score). However, these methods can not work
well for TM data because many traffic volumes are polarizedly
distributed: sometimes, most flows are close to zero, while a
few elephant flows present giant volumes. In such a case, the
small flows would be overwhelmed by the elephant flows by
Min-Max normalization, and the normalized TM data would
present a distorted distribution.

To scale TM data onto an accessible scale while keeping the
true traffic pattern, we propose learning a TM representation
using an encoder E instead of common normalization. The
encoder network E contains multiple fully-connected layers
and a Tanh activation layer, ensuring the values in the latent
vector are within the range of [−1, 1]. To prevent information
loss during the transformation, the embedding vector X ′ ∈
Rn×1 has the same dimension as X . The embedding network
also contains a decoder network D, which is responsible for
supervising the encoder’s training and restoring X ′ to the
original input space. We pre-trained the embedding network
by minimizing the loss function Lemb to ensure the embedding
network is approximately invertible.

Lemb = ||X −D(E(X))||22, (19)

where || · ||2 denotes the L2 norm.

D. Flow-Based Network

...

Coupling Layer

Coupling 
Layer

... Coupling 
Layer

...

...

Fig. 3. Structure of flow-based network in FlowTM: The network comprises
a sequence of coupling layers linked by shuffle operations. Each coupling
layer splits the input into two parts and learns an invertible transformation
using parameterized s(·) and t(·).

The flow-based network F contains a sequence of invertible
coupling layers (as shown in Fig. 3), each applying a RealNVP
transformation. In the first coupling layer, the embedding



vector X ′ is split into two parts: h11 and h12. The output h21
and h22 are computed by

h21 = h11, and h22 = h12 ⊙ exp (s(h11)) + t(h11),

respectively. The two functions s(·) and t(·) are parameterized
with two neural networks. The inverse mapping from output
(h21, h

2
2) to input (h11, h

1
2) can be implemented by

h11 = h21, and h12 = (h22 − t(h11))⊙ exp (−s(h11)),

respectively. There is a shuffle operation between two adjacent
coupling layers. To avoid the violation of inversibility, we
design the shuffle operation as follows: the output (hl1, h

l
2) is

first reshaped to a matrix Hl whose dimension is
√
n ×

√
n.

Then Hl is transposed and reshaped back to the dimension
of n × 1. The inverse shuffle operation is just the same as
the forward shuffle operation. The next coupling layer takes
the shuffled vector as input and splits it into two parts, just
as the first coupling layer does. The final output of the last
coupling layer is split into Y = {y1, y2, . . . , ym} and Z =
{z1, z2, . . . , zn−m}, respectively, where Y is corresponding to
the link loads, and Z is a latent vector representing the lost
information in TM. With the designed structure, network F is
strictly invertible, i.e., X ′ = F−1(F (X ′)) = F−1([Y, Z]).

E. Model Training

The training of FlowTM faces two issues. Firstly, as the
actual routing matrix is unknown, the latent vector Z lacks a
specific training target. Secondly, storing the lost information
for all possible TMs by Z is impractical. To address the two
issues, we first demonstrate that the absent training target can
be achieved indirectly through distribution constraints. Then
we incorporate the lost information into the model parameters
and transform the latent vector into a simple distribution.

Let pX(x) denote the prior distribution of X , pY (y) and
pZ(z) are the distributions of Y and Z, respectively.

Theorem 3: Suppose [Y,Z] = f(X) is a bijective function.
Suppose ∀X ∼ pX(x) the output Y = fY (X) = AX . If the
latent vector Z = fZ(X) is independent to Y , i.e., p(y, z) =
pY (y)pZ(z), then Z is one to one correspondence to the lost
information in X .

Proof: As [Y,Z] = f(X) is a bijective function, the output
[Y,Z] is one-to-one correspondence to X . When Y and Z
are independent of each other, Y and Z will not encode
duplicate information in X . According to Theorem 1, X
can be orthogonally decomposed by X = XA + XN . If
∀X ∼ pX(x) the output Y = fY (X) = AX , Y are one-to-
one correspondence to XA. As XA and XN are orthogonal,
they do not have overlapped information in X . That means
Z is one-to-one correspondence to XN , which is the lost
information in X .□

Substituting f(X) in Theorem 3 by FlowTM, the results
indicate that if the following three conditions can be satisfied,
the lost information in TM can be learned unbiasedly without
knowing the routing matrix A: (1) FlowTM is invertible, (2)
the output Y is always equal to the corresponding link loads,
and (3) Y and Z are independent to each other.

To enable FlowTM to learn the lost information for all pos-
sible TMs (i.e., ∀X ∼ pX(x)), we incorporate the information
of Z into the model parameters and transform Z into a simple
distribution (e.g. a normal distribution) through FlowTM.
Doing so has double benefits: Firstly, the lost information can
be easily synthesized by drawing samples from the distribu-
tion. Secondly, the lost information can be case-independent
without requiring all possible TMs. Experimental results in
Sec. V-E show that although the lost information is synthesized
from 1000 random samples, the posterior distribution of the
estimated TM is extremely sharp when inputting an instance of
link loads. That means FlowTM can effectively transform the
random samples into the lost information, which can uniquely
determine the TM with link loads by high confidence.

Based on the above results, besides the embedding loss
for E and D, and the negative log-likelihood loss (Eqn. (5))
for F , we design four additional training objectives for the
whole FlowTM model, where the first three are corresponding
to the three conditions in Theorem 3, and the last one is
corresponding to the ultimate application of FlowTM.

1) Objective 1, Invertibility Loss: To enhance the invertibil-
ity of FlowTM, the invertibility loss penalizes the deviations
between the input X and the inverse output f−1(f(X)), i.e.,

Linv =||f−1(f(X))−X||22 (20)

=||D(F−1(F (E(X))))−X||22.

2) Objective 2, Link-Load Loss: The link-load loss pe-
nalizes the deviations between the output fY (X) and the
measured link loads Y , i.e.,

Llink =||fY (X)− Y ||22 (21)

=||FY (D(X))− Y ||22.

3) Objective 3, Independent Loss: The independent loss
is used to force the distributions of the outputs fZ(X) and
fY (X) to be independent of each other, i.e. p(y, z) =
pY (y)pZ(z). To implement the independent loss, the joint
distribution of p(y, z) is transformed into p(f(x)). Then, the
loss function can be formulated by

Lindep =ℓ (p(f(x)), pY (y)pZ(z)) (22)
=ℓ (p(F (E(x))), pY (y)pZ(z)) ,

where ℓ(·, ·) is a metric of the discrepancy of two distributions.
pY (y) is the link load distribution, while pZ(z) is a normal
distribution. In our experiments, the discrepancy of the two
distributions is measured by maximum mean discrepancy
(MMD) [34], which compares two distributions by the samples
based on a kernel function.

4) Objective 4, Estimation Loss: The estimation loss penal-
izes the deviations between the estimation of TM f−1(Y,Z)
and the true TM X , where Y is a measurement of link loads
and Z is a sample drawn from a normal distribution:

Lest =||f−1(Y,Z)−X||22 (23)

=||D(F−1([Y,Z]))−X||22.



5) Total Objective: FlowTM is trained based on the total
loss function:

LFlowTM = λ1Linv + λ2Llink + λ3Lindep + λ4Lest, (24)

where λ1, λ2, λ3 and λ4 are hyperparameters for balancing
the weight of the four losses.

V. EXPERIMENTS

A. Datasets

We use two real-world traffic datasets to validate the perfor-
mance of our method: Abilene [35] and GÉANT [36]. Abilene
contains 12 routers, 30 directed inner links and 24 outside
links. The total size of the dataset is 48384 × 144, where
48384 is the number of TM instances and 144 is the number
of flows within a TM. We use the instances during the first
15 weeks (total 30240 instances) as the training data and use
the instances in the 16-th week (total 2016 instances) as the
testing data. GÉANT network contains 23 routers and 120
directed links. The total size of the dataset is 10772 × 529.
We use the first 10 weeks’ collections (total 6720 instances)
as the training data, and the 11-th week’s collections (total
672 instances) as the testing data. All training instances were
divided by the maximum value of link loads in the datasets.

B. Metrics

Referring the mainstreaming metrics that were used in [7]
[12] [27], the estimation accuracy of all methods is qualified
by the normalized mean absolute error (NMAE), normalized
root mean square error (NRMSE), temporal related mean
absolute error (TRMAE), and spatial related mean absolute
error (SRMAE). The smaller these metrics, the higher the
estimation accuracy. We use an additional metric MMD [34] to
assess the similarity between the estimation distribution and
the true TM distribution. The smaller the MMD result, the
more evident that the two distributions are the same.

C. Baselines

We compare our FlowTM with six representative TM esti-
mation methods grouped into three categories.

The first category is the correlation-learning method.
MNETME [27] learns the correlations between link loads
and TM through a BPNN model that incorporates the routing
matrix. It adjusts the outputted TM estimation to satisfy
the linear equations. We modify MNETME to be a routing-
matrix-free version (denoted by BPNN), whose model do
not incorporate the routing matrix, and there are no further
adjustments on the outputs.

The second category is the generative-based method. We
first implemented a GAN-based model [7] [28] to learn the
distribution of TM and then searches for a solution from
Eqn. (1) that most satisfy the learnt distribution. We also
implemented a VAE-based method [12] [37], which first learns
a latent distribution of TM by VAE and then samples an
estimation of TM from the latent distribution that most satisfies
Eqn. (1). As current generative-based models can only learn
the feature of TM, they must incorporate the linear equations

(1) to estimate a TM based on link loads. Therefore, they do
not have a routing-matrix-free version.

The last kind of baseline is the traditional method. To-
mogravity [8] assumes the traffic in TM follows a gravity
model and then uses the least square method to find a solution
of Eqn. (1) that conforms to the gravity model. We modify
Tomogravity to a routing-matrix-free version (denoted by
Gravity), whose estimations only satisfy the gravity model.

D. Model Details

The detailed settings for the embedding and flow-based
networks in FlowTM are listed in Table I. All experiments

TABLE I
HYPERPARAMETERS FOR FLOWTM

#FC Layers in Embedding 2 (Encoder), 1 (Decoder)
Non-Linearity in Embedding Tanh (Encoder), Sigmoid (Decoder)

#Coupling Layers in Flow 3
#FC Layers in Flow 2 (both s(·) and t(·))

Non-Linearity in Flow LeakyReLu (both s(·) and t(·))
Decaying Learning Rate 10−3 ∼ 10−5

Optimizer Adam [38]
Dropout 0.0
#Batch 32

#Training Epoch 100
λ1, λ2, λ3, λ4 2, 2, 0.5, 10

were conducted on a server with 16-core CPUs at 2.6GHz
and 16GB GPU. The results were averaged over 10 runs.

E. Results

1) Performance under Different Routing Scenarios: We
evaluate the seven methods under three routing scenarios:
deterministic routing, probabilistic routing and noisy routing.
Deterministic routing is the simplest routing scenario, where
all OD flows abide by a fixed routing path throughout all
measurement times. In the probabilistic routing scenario, flows
from one source node may go through multiple routing paths
to the destination node with a predefined probability. The last
scenario is noisy routing, which is the most realistic scenario.
In that scenario, routers adaptively select paths for OD flows,
according to the current network loading. That means, the
known routing matrix may not be the ground truth. We provide
each method with a probabilistic routing matrix to simulate the
noisy routing scenario where the probabilities are not the true
values. As FlowTM, BPNN and Gravity (whose names are in
bold in Table II) do not incorporate a routing matrix, they have
the same results in probabilistic and noisy routing scenarios.

Table II lists the NMAE, NRMSE and MMD of all methods
under three routing scenarios. From the table, FlowTM has
significant superiority over other baselines under all scenarios.
All methods perform the best in deterministic routing due to
the simple correlations between TM and link loads. In the
probabilistic scenario, the accuracies of the seven methods
present varying degrees of decline as the correlations become
more complex. In the noisy routing scenario, methods that
incorporate Eqn. (1) encounter a significant degradation in
terms of all metrics. That is because the noisy routing matrix
misguides the adjusting of the outputs to bias solutions.



TABLE II
COMPARISON OF THE SEVEN METHODS IN THREE ROUTING SCENARIOS

Data Abilene GÉANT

Metrics Methods Deterministic
Routing

Probabilistic
Routing

Noisy
Routing

Deterministic
Routing

Probabilistic
Routing

Noisy
Routing

NMAE

FlowTM 0.1907 0.1928 0.1928 0.2666 0.2735 0.2735
MNETME 0.2313 0.2563 0.4689 0.2970 0.3597 0.5189

BPNN 0.4131 0.4569 0.4569 0.4528 0.4669 0.4669
GAN 0.3438 0.3544 0.6384 0.3953 0.3956 0.4893
VAE 0.3953 0.4350 0.5086 0.4983 0.5771 0.6118

Tomogravity 0.5214 0.6908 0.8736 0.6850 0.7972 0.9512
Gravity 0.8193 1.3684 1.3684 0.8759 2.3351 2.3351

NRMSE

FlowTM 0.1673 0.1715 0.1715 0.3589 0.3795 0.3795
MNETME 0.2073 0.2242 0.4969 0.3763 0.4322 0.5065

BPNN 0.4094 0.4410 0.4410 0.5356 0.5384 0.5384
GAN 0.2947 0.3130 0.6400 0.3885 0.3979 0.4584
VAE 0.3726 0.3918 0.4630 0.5469 0.5340 0.5433

Tomogravity 0.4047 0.6886 0.6901 0.4381 0.7591 0.7982
Gravity 0.5771 1.1737 1.1737 0.6190 1.1676 1.1676

MMD

FlowTM 0.0059 0.0068 0.0068 0.0463 0.0478 0.0478
MNETME 0.0092 0.0112 0.0454 0.0593 0.0677 0.0905

BPNN 0.0206 0.0226 0.0226 0.0739 0.0746 0.0746
GAN 0.0204 0.0182 0.0250 0.0751 0.0754 0.0793
VAE 0.0813 0.0819 0.0916 0.1231 0.1194 0.1325

Tomogravity 0.0289 0.0506 0.0644 0.0598 0.1148 0.1164
Gravity 0.0927 0.1890 0.1890 0.0758 0.2510 0.2510

Baselines that do not incorporate a routing matrix perform
generally worse than the other baselines in deterministic and
probabilistic routing scenarios since they lack critical infor-
mation compared with other methods. All methods perform
inferiorly in GÉANT because TMs in this dataset have much
higher dimensions and the training data is also insufficient.
Overall, in Abilene (GÉANT), the estimation accuracy of
FlowTM outperforms the best baseline by 18% (10%) in
the deterministic scenario, 25% (24%) in the probabilistic
scenario and 58% (41%) in the noisy scenario. Furthermore,
the MMD of FlowTM is far below the baselines, which means
the distribution of the estimated TM is much more similar to
the true distribution of TM.
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Fig. 4. Cumulative distribution of NMAE: Flows in TM are separated into
two groups: elephant and mice. Flows with the top-20% volumes are labelled
as elephant flows, whereas the remaining 80% flows are mice flows.

Fig. 4 plots the cumulative distributions of NMAE of
FlowTM and MNETME under three routing scenarios, where
MNETME-det, MNETME-prob and MNETME-noisy denote
the method under deterministic routing, probabilistic routing

and noisy routing, respectively. We only plot MNETME in the
figure due to its suboptimal overall performance in Table II.
We divide the flows in TM into two groups: elephant and mice,
according to their flow volumes. Flows in the elephant group
have the top 20% averaged traffic volumes, while the remain-
ing 80% flows are classified into the mice group. From the
figures, elephant flows in Abilene are much easier to estimate
than that in GÉANT. We can also see a big gap between the
curves of noisy routing and deterministic/probabilistic routing
in figures of elephant flows. That means the noisy routing
matrix has more impact on estimating the elephant flows than
on the mice flows.
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Fig. 5. Temporal estimation errors: the measurement results are aggregated
into 168 records (i.e., once per hour).

2) Temporal and Spatial Accuracy: In this section, we
evaluate the temporal and spatial accuracies of these methods.
As Tomogravity and Gravity do not distinguish training and
testing data, we only plot the testing results of the five DL-
based methods to show their performance after training.



Fig. 5 plots the temporal estimation errors of the five DL-
based methods under deterministic and noisy routings, respec-
tively. In both two datasets, the 7-day’s samples (2016 samples
in Abilene and 627 samples in GÉANT) were aggregated into
168 records (i.e., each result represents the averaged NTRE per
hour). In all figures, FlowTM has the least temporal estimation
errors. Especially in the noisy routing scenario, there is a
significant gap between FlowTM and baseline methods.
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Fig. 6. Spatial estimation errors: the flows on the x-axis are sorted by their
averaged volumes in ascending order.
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Fig. 7. Prior and posterior distributions of flows going out from NYCMng
to the labelled destination: the blue curve denotes the prior distribution of
TM while the red curve denotes the posterior distribution of TM learned by
FlowTM. The blue vertical line is the ground truth of TM. The red dashed line
denotes the estimation of FlowTM. The green and black dashed lines are the
estimations of MNETME under deterministic and noisy routings, respectively.

Fig. 6 presents the spatial estimation errors of the methods
under deterministic and noisy routings, respectively, where the
flows were sorted by their averaged volumes in ascending or-
der. From these figures, all methods perform well in estimating
small flows, especially in GÉANT dataset. From Fig. 6(b)

and Fig. 6(d), for the routing-incorporated methods, the noisy
routing causes estimation deterioration on the top 10% largest
flows in Abilene and top 20% largest flows in GÉANT.

3) Effect of Learning the Lost Information: Different from
former TM estimation methods, FlowTM not only considers
the correlations between TM and link loads but also learns the
lost information collaboratively. To evaluate the performance
of FlowTM on learning the lost information, we input 1000
samples that were randomly drawn from normal distribution
into FlowTM and see how it affects the posterior of TM.

Fig. 7 plots the prior and posterior distributions of 12 flows
sourcing from node NYCMng (located in New York) at 8:00
am on 16 July 2004. Each figure in Fig. 7 represents the flow
from NYCMng to the labelled node. From the figures, we can
learn that (1) the posterior probability of TM outputted by
FlowTM is quite sharp, although the inputs (1000 samples)
of the lost information are randomly drawn from normal
distributions. That indicates FlowTM has effectively learned
the features of the lost information; (2) Compared with the
estimation of MNETME, the TM estimated by FlowTM is
much closer to the ground truth in almost all cases. This
indicates, compared with MNETME, which compensates for
the lost information by learning the TM feature, FlowTM,
which purposefully captures the lost information while learn-
ing the bijective transformations between TM and link loads,
can significantly improve the estimation accuracy even when
the routing matrix is absent.

VI. CONCLUSION

We presented FlowTM, an innovative and low-cost traffic
estimator based on a flow-based generative model. Unlike
existing NT solutions—including those based on DL—which
operate under the assumption of knowing a routing matrix,
either deterministically or probabilistically, FlowTM confronts
the challenge of correlating the Traffic Matrix (TM) and link
loads using a bijective transformation, even in the absence
of a routing matrix. Initially, we demonstrated that the lost
information in TM can be orthogonally separated from the
link loads. Subsequently, we utilized the invertible coupling
layers of the flow-based model to capture this lost informa-
tion, facilitating an invertible transformation from TM data
to link loads. Through extensive experiments on two real-
world traffic datasets, we demonstrated that even without
using the routing matrix, FlowTM can improve the estimation
accuracy of baselines that leverage the routing matrix informa-
tion. Furthermore, FlowTM shows dominant superiority when
the routing matrix information is also absent for baselines.
We have provided public access to our code and data at
https://github.com/duoduoqiao/FlowTM.
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