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Abstract

Accurately predicting the future motions of surrounding
traffic agents is critical for the safety of autonomous ve-
hicles. Recently, vectorized approaches have dominated
the motion prediction community due to their capability
of capturing complex interactions in traffic scenes. How-
ever, existing methods neglect the symmetries of the prob-
lem and suffer from the expensive computational cost, fac-
ing the challenge of making real-time multi-agent motion
prediction without sacrificing the prediction performance.
To tackle this challenge, we propose Hierarchical Vector
Transformer (HiVT) for fast and accurate multi-agent mo-
tion prediction. By decomposing the problem into local con-
text extraction and global interaction modeling, our method
can effectively and efficiently model a large number of
agents in the scene. Meanwhile, we propose a translation-
invariant scene representation and rotation-invariant spa-
tial learning modules, which extract features robust to the
geometric transformations of the scene and enable the
model to make accurate predictions for multiple agents in a
single forward pass. Experiments show that HiVT achieves
the state-of-the-art performance on the Argoverse motion
forecasting benchmark with a small model size and can
make fast multi-agent motion prediction.

1. Introduction
Navigating through dynamic environments in a safe ma-

neuver is a critical mission of autonomous vehicles. To
this end, autonomous vehicles need to understand the sur-
roundings and anticipate the future on the road. However,
it is challenging to accurately predict the future motions of
nearby traffic agents, such as vehicles, bicycles, and pedes-
trians, whose goals or intents may be unknown. In multi-
agent traffic scenarios, an agent’s behavior is shaped by
complex interactions with other agents. Such interactions
further intertwine with the map-dependent traffic regula-
tions, making it extremely difficult to understand the diverse

behavior of multiple agents in the scene.
Recently, learning-based methods have demonstrated

their effectiveness in the motion prediction task [9, 12, 31,
32, 36, 49]. Inspired by the progress in computer vision,
some works rasterize the scenes into bird’s eye view im-
ages and apply CNNs to make predictions [9, 12, 25]. Al-
though these approaches are easy to implement with off-
the-shelf image models, they are computationally expensive
and have limited receptive fields. Given these limitations,
recent works [17, 31, 49] employ a vectorized approach for
more compact scene representations, which extracts a set
of vectors or points from the trajectories and the map ele-
ments. The scenes are then processed by graph neural net-
works [6, 20, 29], Transformers [46], or point cloud mod-
els [39, 40, 47] to learn the relationships among vectorized
entities such as trajectory waypoints and lane segments.

Existing vectorized approaches, however, are challenged
by the need to make real-time motion predictions in rapidly
changing traffic conditions. Since vectorized methods are
generally not robust to translation and rotation of the refer-
ence frame, to mitigate this problem, recent research nor-
malizes the scene to be centered at the target agent and
to be aligned with the target agent’s heading [17, 31, 49].
This remedy becomes problematic when a large number of
agents in the scene need to be predicted, owing to the expen-
sive cost of re-normalizing the scene and re-computing the
scene features for each target agent. Further, existing works
model all-to-all relationships in the space and the time di-
mensions to capture fine-grained interactions among the
vectorized entities [38, 51], which inevitably leads to pro-
hibitive computation with the increase of entities. As mak-
ing accurate predictions in real time is critical for the safety
of autonomous driving, we are thus motivated to push the
state-of-the-art by developing a new framework to achieve
faster and more accurate multi-agent motion prediction.

In a nutshell, our approach exploits the symmetries and
the hierarchical structure in the problem of multi-agent mo-
tion prediction. We frame the motion prediction task in
multiple stages and hierarchically model the relationships



between entities based on Transformers [46]. In the first
stage, our framework avoids expensive all-to-all interaction
modeling and extracts context features only locally. Specif-
ically, we divide the scene into a set of local regions, where
each local region is centered at one modeled agent. For each
agent-centric local region, we extract context features from
the local vectorized entities which contain rich information
related to the central agent. In the second stage, to com-
pensate for the restricted local receptive fields and capture
long-range dependencies in the scene, we perform global
message passing among agent-centric local regions by em-
powering the Transformer encoder with the geometric re-
lationships between local reference frames. Finally, given
the local and the global representations, a decoder produces
future trajectories for all agents in a single forward pass. To
further leverage the symmetries of the problem, we employ
a scene representation that is agnostic about the translation
of the global coordinate frame, in which we use relative po-
sitions to characterize all vectorized entities. Based on this
scene representation, we introduce rotation-invariant cross-
attention modules for spatial learning, which can learn local
and global representations that are invariant to the rotation
of the scene.

Our approach has the following clear advantages. First,
by decomposing the problem into local context extraction
and global interaction modeling, our approach can progres-
sively aggregate information at different scales and model
a large number of entities in the scene with high effi-
ciency. Second, our method can learn representations robust
to translation and rotation of the inputs via a translation-
invariant scene representation and rotation-invariant spatial
learning modules. Third, our model can make faster and
more accurate predictions with much fewer parameters than
the state-of-the-art approaches. We validate all the above
advantages via extensive experiments on large-scale driving
data. Our code will be publicly available.

2. Related Work
Traffic Scene Representation. Tackling the motion pre-
diction problem requires learning rich representations from
the elements of the traffic scene, including the high-
definition map and the past trajectories of agents. Ex-
tensive works have used rasterized scenes as model in-
puts [4, 9, 12, 15, 19, 25, 43] and employed standard image
models [11,24,26,44] for learning. Specifically, these meth-
ods extract map elements (e.g., lane boundaries, crosswalks,
traffic lights) from the high-definition map and use different
colors or masks to render the scenes as bird’s eye view im-
ages. The past trajectories of agents are either rasterized as
additional image channels [9, 12] or processed by temporal
models like RNNs [2, 41, 42].

Rasterized methods are compatible with the mature tech-
niques in computer vision but are also costly and inefficient

in learning. Recently, vectorized methods [17, 31, 49] have
gained popularity for their efficient sparse encoding and the
capability of capturing complex structural information. Un-
like the rasterized approaches, these methods treat the scene
as a set of entities associated with semantic and geometric
attributes and learn the relationships between entities. Vec-
torNet [17] models the interactions among lane and trajec-
tory polylines with graph neural networks. It is also used as
the backbone network by some following works [22,32,52].
LaneGCN [31] builds a lane graph from the lane segments
and exploits multi-scale graph convolutional networks to
learn representations for graph nodes. TPCN [49] extends
point cloud models to learn from the spatial-temporal point
set composed of trajectory waypoints and lane points. Our
scene representation also falls into this category but differs
in that all vectorized entities are characterized by relative
positions, making our representation translation-invariant.

Motion Prediction. Since social interactions are ubiqui-
tous in traffic scenarios and significantly impact the fu-
ture motions of traffic agents, many motion prediction ap-
proaches have considered the dependencies between agents’
behaviors and reasoned agent-agent interactions using so-
cial pooling [2,13,23], graph neural networks [8,27,31,37],
or attention mechanisms [17, 30, 32, 36, 38, 43, 48, 50]. In-
spired by the success of Transformer models [46] in a wide
range of domains [5, 7, 14, 16], some recent works employ
Transformers in the motion prediction task to model spatial
relationships, temporal dependencies, and relationships be-
tween agents and map elements [21, 30, 32, 36, 38, 50, 51].
In comparison, our Transformer architecture differs from
existing ones by learning local and global representations
hierarchically. This hierarchical strategy helps the model
learn multi-scale features and is more efficient than those
performing all-to-all message passing along the space and
the time axes. Moreover, we model multiple agents via an
agent-centric representation that is invariant to translation
and rotation of the scene. The hierarchical architecture and
the symmetric designs enable our method to achieve the
state-of-the-art prediction performance with fewer param-
eters and less computational cost than other approaches.

3. Approach
3.1. Overall Framework

An overview of our proposed framework is illustrated in
Fig. 1. We first organize a traffic scene as a collection of
vectorized entities. Based on this scene representation, our
framework hierarchically aggregates spatial-temporal infor-
mation in the scene. In the first stage, we encode rotation-
invariant local context features for each agent. The aggrega-
tion of ego-motion, neighboring agents’ motions, and local
map structure can provide rich information related to the
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Figure 1. Overview of HiVT. A-A Interaction and A-L Interaction denote Agent-Agent and Agent-Lane Interaction respectively.

modeled agent. In the second stage, a global interaction
module aggregates the local context of different agents and
updates each agent’s representation to capture long-range
dependencies and scene-level dynamics. Finally, the hier-
archically learned representations are used to make multi-
modal trajectory predictions for all agents simultaneously.

3.2. Scene Representation

A traffic scene consists of agents and map information.
To represent the scene in a structured way, we extract vec-
torized entities from the scene, including the trajectory seg-
ments of traffic agents and the lane segments in map data.
A vectorized entity is associated with semantic and geo-
metric attributes. Compared with previous vectorized meth-
ods [17, 31, 49] in which the geometric attributes of agents
or lanes involve the absolute positions of points, our rep-
resentation avoids using any absolute positions and char-
acterizes the geometric attributes with relative positions,
which makes the scene a vector set entirely. Specifically, an
agent i’s trajectory is represented as {pti−pt−1i }Tt=1, where
pti ∈ R2 is agent i’s location at time step t and T is the total
historical time steps. For a lane segment ξ, the geometric
attribute is given by p1

ξ − p0
ξ , where p0

ξ ∈ R2 and p1
ξ ∈ R2

are the starting and the ending coordinates of ξ. By trans-
forming the point set into a vector set, such a representation
guarantees translation invariance naturally. However, the
information about the relative positions between entities is
also discarded. To preserve spatial relationships, we intro-

duce relative position vectors for agent-agent and agent-lane
pairs. For instance, the position vector of agent j relative to
agent i at time step t is ptj − pti, which fully depicts the
spatial relationship of the two agents and is also translation-
invariant. Without any loss of information, our scene repre-
sentation ensures that any learnable functions applied to it
will necessarily respect translation invariance.

3.3. Hierarchical Vector Transformer

To accurately predict the future trajectories of traffic
agents in a highly dynamic environment, the model needs to
effectively learn the spatial-temporal relationships among a
large number of vectorized entities. Transformers [46] have
shown promise in capturing long-range dependencies be-
tween entities in a variety of tasks [5, 7, 14, 16, 33]. How-
ever, directly applying Transformers to the spatial-temporal
entities suffers from the complexity of O((NT + L)2),
where N , T , and L are the numbers of agents, historical
time steps, and lane segments, respectively. To efficiently
learn from a large number of entities, our model factorizes
the space and the time dimensions and learns spatial rela-
tionships only locally at each time step. Specifically, we
divide the space into N local regions, and each local re-
gion is centered at one agent in the scene. Within each
local region are the trajectory segments and the local en-
vironment of the central agent, where the environmental
information involves the trajectory segments of the neigh-
boring agents and the local lane segments surrounding the



central agent. For each local region, we aggregate the lo-
cal information into a single feature vector by sequentially
modeling agent-agent interactions per time step, temporal
dependencies per agent, and agent-lane interactions at the
current time step. After aggregation, the feature vector con-
tains rich information related to the central agent. On the
other hand, the computational complexity is reduced from
O((NT + L)2) to O(NT 2 + TN2 + NL) by the factor-
ization of the space and the time dimensions and is further
reduced to O(NT 2 + TNk+N`) by limiting the radius of
the local regions, where k < N and ` < L.

While the local encoder can learn rich representations
locally, the amount of information is limited by the range
of the local regions. To avoid sacrificing prediction per-
formance, we further employ a global interaction module
to compensate for the restricted local receptive fields and
capture scene-level dynamics, in which we perform mes-
sage passing among local regions. The global interaction
module can significantly enhance the expressiveness of the
model at the cost of O(N2) complexity, which is relatively
lightweight compared with the local encoder.

The multi-agent motion prediction problem exhibits
translation and rotation symmetries. Existing methods [17,
31] re-normalize all vectorized entities w.r.t. each agent and
make single-agent predictions multiple times to achieve in-
variance. This paradigm scales linearly w.r.t. the number of
agents. By comparison, our model can make predictions for
all agents in a single forward pass without sacrificing invari-
ance via using the translation-invariant scene representation
and rotation-invariant spatial learning modules. We illus-
trate the model components in more detail as follows.

3.3.1 Local Encoder

Agent-Agent Interaction. The agent-agent interaction
module aims to learn the relationships between the cen-
tral agent and the neighboring agents for each local region
at each time step. To exploit the symmetries of the prob-
lem, we introduce a rotation-invariant cross-attention block
to aggregate the spatial information. Specifically, we uni-
formly take the central agent i’s latest trajectory segment
pTi − pT−1i as the reference vector of the local region and
rotate all local vectors according to the reference vector’s
orientation θi. Based on the rotated vectors and their asso-
ciated semantic attributes, we use Multi-Layer Perceptrons
(MLPs) to obtain the central agent i’s embedding zti ∈ Rdh
and any neighboring agent j’s embedding ztij ∈ Rdh at any
time step t:

zti = φcenter
([
R>i

(
pti − pt−1i

)
,ai
])
, (1)

ztij = φnbr
([
R>i

(
ptj − pt−1j

)
,R>i

(
ptj − pti

)
,aj
])
, (2)

where φcenter(·) and φnbr(·) are two different MLP blocks,
Ri ∈ R2×2 is the rotation matrix parameterized by θi, ai

and aj are the semantic attributes of agent i and agent j,
respectively. Since all geometric attributes are normalized
w.r.t. the central agent before they are fed into MLPs, these
embeddings are unaffected by the rotation of the global co-
ordinate frame. Apart from the trajectory segments, the
inputs of φnbr(·) also contain neighboring agents’ position
vectors relative to the central agent, making the neighboring
embeddings spatially aware. The embedding of the central
agent is then converted to the query vector, and the embed-
dings of the neighboring agents are used to calculate the key
and the value vectors:

qti = WQspace
zti, ktij = WKspace

ztij , vtij = WV space
ztij ,

(3)
where WQspace

,WKspace
,WV space ∈ Rdk×dh are learnable

matrices for linear projection and dk is the dimension of the
transformed vectors. The resulting query, key, and value
vectors are taken as inputs to the scaled dot-product atten-
tion block:

αti = softmax

(
qt

>

i√
dk
·
[{

ktij
}
j∈Ni

])
, (4)

mt
i =

∑
j∈Ni

αtijv
t
ij , (5)

gti = sigmoid
(
Wgate [zti,mt

i

])
, (6)

ẑti = gti �Wselfzti +
(
1− gti

)
�mt

i, (7)

where Ni is the set of agent i’s neighbors, Wgate and Wself

are learnable matrices, and � denotes element-wise prod-
uct. Compared with the standard scaled dot-product atten-
tion [46], our variant uses a gating function to fuse the en-
vironmental features mt

i with the central agent’s features
zti, enabling the block to have more control over the feature
update. Like the original Transformer architecture, our at-
tention block can also be extended to multiple heads. The
outputs of the multi-head attention block are passed through
an MLP block to obtain the spatial embedding sti ∈ Rdh of
agent i at time step t. In addition, we apply Layer Normal-
ization [3] before each block and residual connections [24]
after each block. In practice, this module can be imple-
mented using efficient scatter and gather operations to paral-
lelize the learning across all local regions and all time steps.
Temporal Dependency. To further capture the tempo-
ral information of each local region, we employ a temporal
Transformer encoder on top of the agent-agent interaction
module. For any central agent i, the input sequence of this
module is composed of the embeddings {sti}Tt=1 returned by
the agent-agent interaction module at different time steps.
Similar to BERT [14], we append an extra learnable token
sT+1 ∈ Rdh to the end of the input sequence. Then, we add
learnable positional embeddings to all tokens and stack the



tokens into a matrix Si ∈ R(T+1)×dh , which is fed into the
temporal attention block:

Qi = SiW
Qtime

, Ki = SiW
K time

, Vi = SiW
V time

,
(8)

Ŝi = softmax

(
QiK

>
i√

dk
+ M

)
Vi, (9)

Muv =

{
−∞ if u < v ;

0 otherwise ,
(10)

where WQtime
,WK time

,WV time ∈ Rdh×dk are learnable ma-
trices, and M ∈ R(T+1)×(T+1) is the temporal mask that
enforces the tokens only attend to the preceding time steps.
The temporal learning module also consists of alternating
multi-head attention blocks and MLP blocks. We input the
updated extra tokens, which summarize the spatial-temporal
features of the local regions, to the subsequent agent-lane
interaction module.
Agent-Lane Interaction. The local map structure can in-
dicate the future intent of the central agent. Thus, we incor-
porate the local map information into the embeddings. We
first rotate the local lane segments and the agent-lane rela-
tive position vectors at the current time step T . The rotated
vectors are then encoded by an MLP:

ziξ = φlane
([
R>i

(
p1
ξ − p0

ξ

)
,R>i

(
p0
ξ − pTi

)
,aξ
])
,
(11)

where φlane(·) is the MLP encoder for the lane segments,
Ri ∈ R2×2 is the rotation matrix of agent i’s local region,
p0
ξ ∈ R2, p1

ξ ∈ R2, and aξ are the starting location, the
ending location, and the semantic attributes of lane segment
ξ, respectively. With the central agent’s spatial-temporal
features as the query input and the MLP-encoded lane seg-
ment features as the key/value inputs, the agent-lane atten-
tion is calculated in the same way as described from Eq. (3)
to Eq. (7). We further apply another MLP block to obtain
the final local embedding hi ∈ Rdh of the central agent i.

After sequentially modeling agent-agent interactions,
temporal dependencies, and agent-lane interactions, the em-
beddings have fused rich information related to the central
agents of the local regions.

3.3.2 Global Interaction Module

We introduce a global interaction module to capture long-
range dependencies in the scene. Since local features are
extracted in agent-centric coordinate frames, the global in-
teraction module needs to bridge inter-frame geometric re-
lationships when performing message passing among lo-
cal regions. To this end, we extend the Transformer en-
coder to be aware of the differences between local coordi-
nate frames. For example, the differences between agent
i’s and agent j’s coordinate frames can be parameterized by

pTj − pTi and ∆θij , where ∆θij denotes θj − θi. When
performing message passing from agent j to agent i, we use
an MLP φrel(·) to obtain the pairwise embedding eij :

eij = φrel
([
R>i

(
pTj − pTi

)
, cos (∆θij) , sin (∆θij)

])
.

(12)
The pairwise embedding is then incorporated into the trans-
formation of the vectors,

q̃i = WQglobal
hi,

k̃ij = WKglobal
[hj , eij ] ,

ṽij = WV global
[hj , eij ] ,

(13)

where hi and hj are the local embeddings of agent i and
agent j, and WQglobal

,WKglobal
,WV global

are learnable matri-
ces. To capture pairwise interactions globally, we apply the
same spatial attention block as in the local encoder, which
is followed by an MLP block that outputs the global repre-
sentation h̃i for any agent i.

3.3.3 Multimodal Future Decoder

The future motions of traffic agents are inherently multi-
modal. Thus, we parameterize the distribution of future tra-
jectories as a mixture model where each mixture component
is a Laplace distribution. The predictions are made for all
agents in a single shot. For each agent i and each compo-
nent f , an MLP receives the local and the global represen-
tations as inputs and outputs the location µti,f ∈ R2 and
its associated uncertainty bti,f ∈ R2 of the agent per future
time step in the local coordinate frame. The output tensor of
the regression head has the shape of [F,N,H, 4], where F
is the number of mixture components, N is the number of
agents in the scene, andH is the number of predicted future
time steps. We also use another MLP followed by a softmax
function to produce the mixing coefficients of the mixture
model for each agent, which have the shape of [N,F ].

3.4. Training

We employ the variety loss [23, 45] to encourage the di-
versity of multiple trajectory hypotheses, which optimizes
only the best of the F predictions during training. Be-
fore optimization, we first calculate the errors between the
ground-truth locations and the locations of the F mixture
components predicted by the model for each agent and each
time step. Then, we sum up the errors across all future time
steps to obtain a matrix of shape [F,N ], according to which
we select the trajectory with minimum error for each agent,
i.e., finding the minimum value of each column in the er-
ror matrix. The final loss function comprises the regression
loss Lreg and the classification loss Lcls with equal weights:

L = Lreg + Lcls. (14)



We adopt the negative log-likelihood as the regression loss:

Lreg = − 1

NH

N∑
i=1

T+H∑
t=T+1

log P
(
R>i

(
pti − pTi

)
| µ̂ti, b̂ti

)
,

(15)
where P(· | ·) is the probability density function of Laplace
distribution, and {µ̂ti}T+H

t=T+1, {b̂ti}
T+H
t=T+1 are the locations

and the uncertainties of the best-predicted trajectory for
agent i. We use the cross-entropy loss as the classification
loss to optimize the mixing coefficients.

4. Experiments
4.1. Experimental Setup

Dataset. We evaluate our prediction framework on the
large-scale Argoverse motion forecasting dataset [10],
which provides the trajectories of agents and the high-
definition map data. The dataset contains 323557 real-
world driving scenarios and is split into training, valida-
tion, and test sets, with 205942, 39472, and 78143 sam-
ples. All training and validation scenarios are 5-second se-
quences sampled at 10 Hz, while only the first 2-second
trajectories are publicly available in the test set. Given the
initial 2-second observations, the Argoverse Motion Fore-
casting Challenge requires predicting the 3-second future
movements of the agents.
Metrics. We evaluate our model on the standard metrics for
motion prediction, including minimum Average Displace-
ment Error (minADE), minimum Final Displacement Error
(minFDE), and Miss Rate (MR). These metrics allow mod-
els to forecast up to 6 trajectories for each agent. The met-
ric minADE measures the `2 distance in meters between the
best-predicted trajectory and the ground-truth trajectory av-
eraged over all future time steps, while minFDE measures
the error at the final future time step. The best-predicted tra-
jectory is defined as the one that has the minimum endpoint
error. MR refers to the ratio of scenarios where the distance
between the ground-truth endpoint and the best-predicted
endpoint is above 2.0 meters.
Implementation Details. We train our model for 64
epochs on an RTX 2080 Ti GPU using AdamW opti-
mizer [35], with the batch size, initial learning rate, weight
decay, and dropout rate set to 32, 3 × 10−4, 1 × 10−4, and
0.1, respectively. The learning rate is decayed using the co-
sine annealing scheduler [34]. Our model consists of 1 layer
of agent-agent and agent-lane interaction module, 4 layers
of temporal learning module, and 3 layers of global interac-
tion module. The number of heads in all multi-head atten-
tion blocks is 8. The radius of all local regions is 50 meters.
We follow the convention in the baselines and set the num-
ber of the predicted modes F to 6. We do not use tricks
such as ensemble methods and data augmentation. We con-
duct experiments based on a small model with 64 hidden

A-A Temporal A-L Global minADE minFDE MR

X X X 0.71 1.07 0.11
X X X 1.00 1.56 0.21
X X X 0.77 1.25 0.14
X X X 0.73 1.13 0.12
X X X X 0.69 1.04 0.10

Table 1. Ablation studies on the components of our framework.

Gated Update Temporal Mask minADE minFDE MR

0.70 1.07 0.11
X 0.70 1.05 0.11

X 0.70 1.05 0.11
X X 0.69 1.04 0.10

Table 2. Ablation studies on the attention blocks.

units and a large model with 128 hidden units, termed as
HiVT-64 and HiVT-128, respectively.

4.2. Ablation Studies

We conduct ablation studies on the Argoverse validation
set. Unless specified, experimental results are based on our
64-dimension model HiVT-64.
Importance of Each Module. We demonstrate each mod-
ule’s contribution to the prediction performance by alter-
nately removing one of the components. As shown in
Tab. 1, each component can improve the performance to a
certain degree. First, without the agent-agent interaction
module, the model cannot capture fine-grained local inter-
actions at previous time steps and suffers from performance
drop. We also note that adding more layers of this module
can further improve the performance, but we keep using one
layer for higher efficiency. Second, the temporal learning
module has the most significant impact on the performance
since inferring the future motions of traffic agents in highly
dynamic traffic scenarios relies heavily on the historical in-
formation. Third, the lane information plays a crucial role in
motion predictions since traffic agents usually move along
the lanes due to the constraint of traffic rules. Moreover, the
global interaction module can noticeably improve the pre-
diction performance. This result validates its capacity for
capturing long-range dependencies.
Ablation Studies on the Attention Blocks. We evaluate
the effect of the gated update function in the spatial atten-
tion block and the temporal mask in the temporal attention
block. As shown in Tab. 2, using the gating function can
improve the prediction performance, presumably because
some agents do not interact much with the environment.
The results in Tab. 2 also show that removing the temporal
mask in the temporal attention block can lead to worse per-
formance, which suggests that preventing tokens from at-
tending to subsequent time steps is beneficial to the model.



Model Representation Spatial Module minADE minFDE MR

HiVT-64 Point Set w/o Rotation 1.09 1.89 0.26
HiVT-64 Vector Set w/o Rotation 0.73 1.13 0.12
HiVT-64 Vector Set w/ Rotation 0.69 1.04 0.10
HiVT-128 Vector Set w/o Rotation 0.69 1.04 0.10
HiVT-128 Vector Set w/ Rotation 0.66 0.96 0.09

Table 3. Impact of translation and rotation invariance on the pre-
diction performance.
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Figure 2. Data efficiency and robustness of models.

Importance of Translation and Rotation Invariance. We
measure the importance of translation and rotation invari-
ance quantitatively. In the ablation studies, we first repre-
sent the scene as a point set and normalize the coordinates
according to the autonomous vehicle’s position and heading
at the current time step. This representation is scene-centric
and is not invariant to the translation of the scene. We fur-
ther replace the rotation-invariant cross-attention blocks in
the spatial learning modules with their non-invariant coun-
terparts. As shown in the first row of Tab. 3, learning under
a scene-centric representation cannot produce reliable pre-
diction results. The results in Tab. 3 also show that employ-
ing our proposed translation-invariant representation and
rotation-invariant spatial learning modules can notably im-
prove the prediction performance, which suggests that the
geometric priors can ease the learning difficulty of models.
Interestingly, although the model size of HiVT-128 is nearly
three times larger than HiVT-64 (see Tab. 4), without the
inductive bias of rotation invariance, HiVT-128 cannot out-
perform HiVT-64. This phenomenon shows the importance
of symmetries to parameter efficiency.

We further demonstrate the data efficiency and the ro-
bustness that benefited from rotation invariance. We train
HiVT-64 with and without the inductive bias of rotation in-
variance using 5%, 10%, 20%, 50%, and 100% of the train-
ing data and evaluate the performance on the validation set.
As shown in Fig. 2 (a), the rotation-invariant model requires
fewer training data to achieve similar performance to its
non-invariant counterpart. In Fig. 2 (b), we show that our
proposed spatial learning module is robust to the rotation of
the scene, while the prediction performance of its counter-
part is severely affected by the rotation angle.

Method minADE minFDE MR #Param

HiVT-64 0.8067 1.2433 0.1396 662K
HiVT-128 0.7735 1.1693 0.1267 2,529K
LaneGCN [31] 0.8679 1.3640 0.1634 3,701K
Scene Transformer [38] 0.8026 1.2321 0.1255 15,296K
DenseTNT [22] 0.8817 1.2815 0.1258 1,103K
MultiModalTransformer [28] 0.8372 1.2905 0.1429 6,328K
mmTransformer [32] 0.8436 1.3383 0.1540 2,607K
HOME+GOME [18, 19] 0.8904 1.2919 0.0846 5,100K
TPCN [49] 0.8153 1.2442 0.1333 -

Table 4. Quantitative results on the Argoverse Motion Forecast-
ing Leaderboard [1]. The model sizes are reported by the authors
or are calculated using the official implementations. Symbol “-”
means model size unknown because the authors have not disclosed
it and no open-source implementation is available.

When only one agent in the scene needs to be predicted,
existing vectorized methods [17, 31, 49] achieve translation
and rotation invariance by normalizing all entities in the
scene w.r.t. the agent to be predicted. However, in the set-
ting of multi-agent prediction, these methods cannot ac-
curately predict the motions of multiple agents in a sin-
gle forward pass since only one agent in the scene is nor-
malized each time. To verify this, we evaluate the robust-
ness of LaneGCN [31] to the rotation of the scene. Like
many other competitive methods on the Argoverse dataset,
LaneGCN normalizes the scene to be centered at the target
agent and to be aligned with the target agent’s heading. The
results in Fig. 2 (b) show that the prediction performance
of LaneGCN is sensitive to the rotation angle of the scene,
indicating that it is unable to make accurate predictions for
agents with arbitrary headings. As a result, making predic-
tions for multiple agents requires re-normalizing the scene
and performing forward passes multiple times to achieve
invariance. By contrast, HiVT models all agents symmetri-
cally and makes predictions for all of them in a single shot
without sacrificing invariance, translating to fast and accu-
rate multi-agent prediction.

4.3. Results

Comparison with State-of-the-art. We compare our
method with the state-of-the-art models on the Ar-
goverse test set. The results in Tab. 4 were col-
lected from the Argoverse leaderboard [1] on 16/11/2021.
HOME+GOHOME [18,19] is the only rasterized method in
the table, and it uses much more parameters than most vec-
torized methods but does not perform well on the metrics
except MR. Using 82.1%, 74.6%, and 40.0% fewer param-
eters, HiVT-64 significantly outperforms LaneGCN [31],
mmTransformer [32], and DenseTNT [22] on the metrics
of minADE and minFDE. Compared with Scene Trans-
former [38] and MultiModalTransformer [28], which are
two Transformer-based motion prediction models proposed



Model Speed (ms) minADE minFDE MR

LaneGCN [31] 173 0.71 1.08 0.10
DenseTNT (w/ 100ms opt.) [22] 2644 0.73 1.05 0.10
DenseTNT (w/ goal set pred.) [22] 531 0.75 1.05 0.10
HiVT-64 (local only, r=20) 38 0.74 1.17 0.13
HiVT-64 (local only, r=50) 52 0.73 1.13 0.12
HiVT-64 (local+global, r=20) 39 0.70 1.08 0.11
HiVT-64 (local+global, r=50) 53 0.69 1.04 0.10
HiVT-64 (local+global, r=80) 68 0.69 1.04 0.10
HiVT-128 (local+global, r=50) 69 0.66 0.96 0.09

Table 5. The inference speed and the prediction performance of
models on the Argoverse validation set. Symbol “r” denotes the
radius of the local regions in meters of our models.

recently, HiVT-64 uses 95.7% and 89.5% fewer parameters
but still achieves on par or better performance. With 83.5%
and 60.0% fewer parameters than Scene Transformer and
MultiModalTransformer, HiVT-128 outperforms all meth-
ods shown in Tab. 4 in terms of minADE and minFDE. The
above results show the superior prediction performance and
parameter efficiency of our approach. Our method ranked
1st in terms of minADE on 16/11/2021 and remains com-
petitive ranking on the Argoverse leaderboard.
Inference Speed. We compare the inference speed of mod-
els on the Argoverse validation set using an RTX 2080 Ti
GPU and a batch size of 32. Such a batch size is close to the
average number of agents per scene. As shown in Tab. 5, all
variants of our model have faster inference speed than the
baselines, and the prediction accuracy of the full model sur-
passes the baselines when the radius of the local regions is
no less than 20 meters. Although in Tab. 5 we assume that
multiple forward passes are needed for multi-agent predic-
tions and show the inference speed when the batch size is
32, our approach can actually make accurate predictions for
all agents using a single forward pass due to the symmetric
designs. When the batch size is one and the radius is 50
meters, the average inference speed of HiVT-128 is around
20 ms, which satisfies the real-time requirement.

From Tab. 5 we can see that adding the global interaction
module introduces negligible computational cost but sub-
stantially improves the prediction performance. This result
validates the effectiveness of the global interaction module.
We also vary the radius of the local regions to obtain mod-
els with different computational complexity. Table 5 shows
that reducing the radius can speed up the inference of the
overall model, and using a much larger radius of 80 meters
suffers from slower inference but does not help the perfor-
mance. Our local-global architecture allows the practition-
ers to choose the appropriate size of local regions based on
the requirement for prediction accuracy and the constraint
of computing resources.
Qualitative Results. We present the qualitative results of
HiVT-128 on the Argoverse validation set. For clarity, we

Figure 3. Qualitative results of HiVT-128. The past trajectories
are shown in yellow, the ground-truth trajectories are shown in
red, and the predicted trajectories are shown in green.

visualize only two agents per scene. As shown in Fig. 3,
our model can make accurate, multimodal, and reasonable
predictions for multiple agents simultaneously in complex
traffic scenarios. Interestingly, although the dataset does not
contain information about the traffic light state, the upper-
left example shows that our model successfully predicts the
sudden acceleration of vehicles at an intersection.

5. Conclusion
In this paper, we propose a novel framework for multi-

agent motion prediction, which hierarchically models the
interactions between vectorized entities through local con-
text extraction and global interaction modeling. Built upon
this framework, we present a translation-invariant scene
representation and a rotation-invariant transformer architec-
ture for learning. The symmetric designs can noticeably im-
prove the model’s prediction accuracy, data efficiency, and
parameter efficiency. Experiments show that our approach
achieves the state-of-the-art performance on the Argoverse
motion forecasting benchmark with much fewer model pa-
rameters and faster inference speed than existing solutions.
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