Automatic Field Extraction of Extended TLV for
Binary Protocol Reverse Engineering

Zewen Huang', Kui Wu', Shenggiang Huang?, Yang Zhou?, Ronnie Salvador Giagone®
1Department of Computer Science, University of Victoria, B.C., Canada
?Huawei Technologies Canada Co. Ltd., Burnaby, B.C., Canada

Abstract—Type Length Value (TLV) is one of the main struc-
tures commonly used in network protocols. A large number of
proprietary protocols, whose specification is unknown to the
public, run in the current Internet as well as domain-specific
Internet of Things (IoT) applications. It is critical to infer the
TLV fields within a packet because this information can help
network administrators quickly identify abnormal traffic and
potential attacks. Inferring TLYV fields belongs to the general task
of protocol reverse engineering and is particularly challenging
for binary protocols, where the boundaries of TLV fields have
many possible positions. Existing methods for reverse engineering
binary protocols involve many parameters and only work for
protocols strictly following the conventional TLV format. We
extend the concept of TLV to accommodate a broader category of
structural patterns in various binary protocols, such as TCP, IP,
ModBus, and MQTT. We then design algorithms to automatically
extract the extended-TLV fields from packets. Via a series of
experiments over several protocols, we demonstrate that our
algorithms can accurately and quickly identify the extended-
TLV fields in all the tested protocols. Our approach can thus
be deployed as a general method for automatically reverse
engineering binary protocol format.

Index Terms—Extended TLV, Binary Protocol Reverse Engi-
neering.

I. INTRODUCTION

Over 40% of traffic on the backbone of the Internet is using
private protocols [1], among which a significant portion are
binary protocols. This phenomenon becomes more prominent
with the recent advance of the Internet of Things (IoT),
where many I[oT systems are proprietary and use protocols
unknown to the public. The lack of knowledge of underlying
network protocols poses a big barrier to the accurate detection
of abnormal traffic and intrusions. Network protocol reverse
engineering (PRE) is one critical technique to address this
problem.

The primary purpose of PRE is to automatically deduce
the underlying message format of a network protocol without
knowing any knowledge about the protocol specification. A
network protocol can be classified as text-based, such as
HTTP, where packet header includes plaintext and is easy to
analyze, and binary-based, such as TCP, where packet header
contains only binary bits and it is challenging to identify the
boundaries of each field. PRE techniques generally fall into
three categories, network-based, program-based, and hybrid
methods [2]. The first category analyzes network traffic; the
second analyzes the behaviour of software components at the
end hosts; the third uses both. We focus on network-based

PRE in this work, because it is the most viable solution for
many real-world systems where we cannot access the end
hosts for various reasons. For instance, most smart camera
manufacturers offer web-based surveillance services where the
remote server is located in the cloud and controlled by the
service provider.

Among previous works in automatic reverse engineering
private protocols, the most famous one is the Project Informat-
ics (PI) project [3]. PI borrowed the idea from bioinformatics
and used a multiple sequence alignment (MSA) algorithm to
discover the common pattern across the packets in network
traffic. Since then, the concept of sequence alignment has
played a fundamental role in PRE and has motivated a series
of subsequent works. For instance, Cui et al. [4] designed
Discoverer, a tool that tokenizes the sequence of packets and
uses type-based sequence alignment and clustering algorithms
to infer protocol message formats. Tao et al. [5] proposed PRE-
bin, which uses the Bayes decision model to determine field
boundaries in binary protocols.

All the above methods, however, have drawbacks when
applied in PRE binary protocols. The MSA algorithm used in
PI compares sequence byte by byte whereas fields of a binary
protocol may only contain a few bits. Discoverer [4] defines
a token as a sequence of consecutive byfes that are likely
to belong to the same application-level field. Tokenization
depends on printable characters, which usually do not appear
in binary protocols. Indeed, the authors pointed out that “for
binary fields, identifying field boundaries is very hard; so we
instead simply declare a single binary byte to be a binary
token in its own right.” PRE-Bin [5] tried to solve the problem
of identifying field boundaries in binary protocols by using
multiple sequence alignment and the Bayes decision model.
PRE-BIN, however, introduces many parameters that need
a manual tune-up, making PRE-BIN extremely hard to use,
particularly when people have no prior knowledge of which
parameters work empirically the best.

We tackle the problem of inferring field boundaries in binary
protocols from a fresh new angle. So far, all the methods try
to generalize for all kinds of packet formats without relying
on prior knowledge. It is possible and definitely helpful to
learn some prior knowledge by studying the protocol fields that
commonly appear in many known protocols. We omit ASCII
fields since they can be accurately identified with existing
methods [3]-[5] and mainly focus on binary fields. To this
end, we start with a broadly-used data structure, type-length-

value (TLV), as prior knowledge and generalize it to extended
TLV, whose formal definition will be given later, to cover a
large corpse of protocol header formats.

A. Challenges

Generalizing the concept of TLV to cover a broader category
of protocols and automatically identifying the (extended) TLV
fields pose several challenges that cannot be solved with
existing PRE techniques.

o Extended concept about L: In the traditional version, L
is a length field measuring the size of a block called
value (V) field that follows right after the L field. Many
protocols do not conform to this traditional definition. For
instance, in TCP header, the header length has 4 bits in
the unit of 4 bytes (e.g., 1010 means the header length is
40(= 10 % 4) bytes. To generalize TLV for TCP header
analysis, L is still a length field; However, the V field can
be any block of fields and may be located anywhere in
the packet as long as its relative distance from L is fixed.
In addition, we need to allow L to measure the size of
the V field plus some offset since we do not know what
and where the V field is.

o Binary protocols: Since we are dealing with a binary
protocol, any bit could be the starting bit of a TLV field,
which may only contain a few bits. Inferring boundaries
in the unit of bits is extremely challenging and time-
consuming.

o Unit problem: The unit of the L field is uncertain. Assume
that the size of V field uses 32 bits and the L field
measures the size of the V. The L field will be 1 if
L is measured in the unit of 4 bytes (like TCP), and
will be 100 if L is measured in the byte unit. Hence,
a different unit will lead to a different length of the L
field. Unfortunately, for a private binary protocol, we do
not know in advance the unit used in the measure.

In this research, we present a solution to tackle all the above
challenges. The key idea is based on the following fact: the
relative distance between the L and the V fields is usually
constant for a given protocol. By identifying this constant
across all packets, we could spot the possible locations for
extended-TLV fields. Although calculating this constant re-
quires the value of the L field and any bit could be the first
bit of the L field in a binary protocol, the length of the L field
must be bounded. Due to this reason, we can deduce not only
the value of the L field but also the unit it uses. Leveraging
this idea, we make the following contributions:

o We formally define the concept of extended TLV, in
which the L field could potentially measure anything
within the packets. In addition, we define a more general
packet structure where the extended TLV can be applied.
Not only does it cover the traditional TLV, but it can also
extract the L field even when there is a constant offset in
the V field.

« We systematically analyze the efficiency of our algorithm,
called Auto-ETLV, in terms of complexity, converge rate,

and accuracy. The algorithm contains two main opera-
tions, Generation and Verification. Generation generates
and records all sets of possible values for our interests,
and Verification quickly verifies the percentage of packets
for which the recorded values hold. The final output will
be a set of possible values. We also analyze the converge
rate, i.e., how quickly the set of possible values converges
to a small number of values.

« We implement and test Auto-ETLV over several binary
protocols, including IP, TCP, Modbus, and MQTT. Our
results show that it is efficient in terms of running time. It
can achieve high accuracy by identifying the exact L field
for Modbus and returning a number of possible locations
for the L field for TCP.

The rest of the paper is organized as follows. We introduce
related work in Section II. In Section III, we formally define
the concept of extended TLV and the notations we will use
throughout the paper. In Section IV, we show some useful
observations in the binary protocol, based on which we design
algorithms for automatic field identification in Section V.
We evaluate our algorithm in Section VI and discuss the
potential applications of our work in Section VII. The paper
is concluded in Section VIII.

II. RELATED WORK

The current PRE methods mainly fall into two categories,
network trace-based approach and execution trace-based ap-
proach. The former takes traffic captured on the network as
input, whereas the latter assumes the programs running the
protocol are accessible and takes the program binary code as
input. Depending on how we process the input and output, we
can further divide them into active/passive or protocol format/-
grammar [6]. The active method purposely sends messages to
the network to create traffic, whereas the passive method only
captures the traffic on the network without creating traffic.
On the other hand, the output of PRE could be either a
protocol structure/format which specifies the protocol fields
or a grammar that includes the rules for message exchanges.

A. Network Trace-Based Approach

The PI [3] project developed idea of Multi-Sequence Align-
ment (MSA) which composed of Needleman-Wunsch [7] and
Smith Waterman [8] algorithms. Packets are classified, and
protocol formats are generated by aligning similar packets.
Nevertheless, the PI project mainly identifies similar packets
with clustering, and it needs users to determine the protocol
fields manually. One automatic method that produces protocol
format, called Discoverer [4], breaks each packet into a se-
quence of tokens, then recursively classifies the tokens. In the
end, different token types are interpreted as different protocol
fields. Another similar method, called ReverX [9], keeps a
set of predefined delimiter characters and uses it to break a
message into fields. It constructs two automata to model the
protocol fields and the protocol grammar. Both ReverX and
Discoverer only work on byte-aligned protocols and require

a predefined symbol set. Another automatic method, PRE-
Bin [5], handles the non-byte-aligned binary protocols by
combining multi-sequence alignment and the Bayes’ decision
model. PRE-Bin, however, requires users to configure up to
eight parameters manually.

B. Execution Trace-Based Approach

Polyglot [10] produces a protocol format and analyzes
the binary code using a shadowing algorithm for PRE that
collects all necessary information when the protocol program
is running. AutoFormat [11] extracts different protocol fields
by examining different execution contexts such as run-time
call stack for every message. MACE [12], on the other hand,
builds a finite state model that learns from execution loops to
infer the protocol grammar.

In summary, the network trace-based approach takes net-
work traffic as input, whereas the execution trace-based ap-
proach takes program code as input. Our work belongs to the
former but differs from any existing ones. Unlike most network
trace-based methods relying on classification, we define a
general structure for TLV inference and directly identify the
fields based on the most-likely matches in network traffic data.

III. BACKGROUND AND PROBLEM DEFINITION
A. What is TLV?

Type-length-value (TLV) is a broadly-used scheme for en-
coding information in communication protocols. It’s also re-
ferred to as tag-length-value or key-length-value. TLV-encoded
packets include the type code, followed by the length of value,
and then the value itself. This encoding scheme has been
used in a large class of protocols such as SSL/TLS [13],
RADIUS [14], and LLDP [15]. A canonical form of the TLV
encoding scheme uses consecutive blocks as follows:

P=|...|T|L|V]...] (1)

where P denotes a packet, T denotes the type code, L denotes
the length field, V' denotes the value field, and ... represents
the rest parts of the packet.

As network protocols evolve, TLV may appear in various
forms. For example, the scheme may appear as LTV [16],
which is the same as TLV except that the positions of L and T’
are swapped. As another example, the CoAP protocol [17] uses
a TLV-like encoding scheme, where V' is a token field, and L
measures the length of the token. But V' does not immediately
follow the L field, and there are other fields between the L
field and the V field. In this example, the L field and the
V field are not consecutive blocks. They are separated with
a fixed number of bits in between. If we relax the canonical
definition of TLV, we can cover a much broader category of
protocols into this “TLV” encoding scheme. For example, if
we relax the requirement by assuming that the V field is as
large as the packet header!, TCP header can fit into the relaxed

'Note that we do not know the boundary between TCP header and data in
PRE, but the V field can be inferred if the trace includes diverse TCP packets,
some of which may not include data, e.g., TCP SYN and FIN packets.

TLV encoding scheme since the L field measures the entire
TCP header.

The above observation motivates us to extend the canonical
TLV form, based on which we can build a powerful tool for
reverse engineering a large group of unknown protocols.

B. Extended TLV (ETLV)

To help better understand our extended TLV scheme, we
first introduce several functions.

o Length function £(x): It determines the number of bits
used to represent binary string z, e.g., £(101) = 3.

o Value function V(z): It determines the value of binary
string « in decimal, e.g., V(101) = 5.

« Binary function B(d): It converts decimal d to binary
string, e.g., B(5) = 101.

With the above functions, we formally define the extended

TLV (ETLV) as follows.

Definition 1. Extended TLV (ETLV): Assume that P is
a packet in the format of P = |Fi|L|Fy|V|F3|, where
L(F1),L(L), L(F3), and L(F3) are all constant. In addition,
if P satisfies any of following conditions:

1) Case 1: V(L) = L(V),

2) Case 2: V(L) = L(P),

3) Case 3: V(L) = L(V)+C, where C is a constant (offset),
we say that the packet P follows the extended TLV (ETLV)
structure.

In the ETLV packet structure, we introduce three blocks
I, F5, F3, each of which may contain any number (including
zero) of bits. The F block means that the L field locates at
a fixed location relative to the start of the packet since the
L field usually does not appear at the beginning of a packet.
The Fy block separates the L field and the V field so they
can stay apart by a fixed distance. The F3 block allows any
extra fixed-size information at the end of the V field, since
a protocol may not end with the V field. Note that we do
not explicitly define a 7" field, implying that the 7" field could
be in any of the Fi, F5, F3 blocks. In addition, we assume
that Fy, Fy, F3, and L all have fixed length, including zero.
In particular, when the size of L is zero, i.e., L(L) = 0, we
have £(V') = 0 since we do not have a L field. In this special
case, the packet P would only contain F}, F5, F3, suggesting
that P has a fixed size.

Next, we use examples to explain different cases in the
ETLV structure.

« Examples of Case 1: This case is similar to the canonical
TLV, where the L field tells the length of the V field.
All protocols following the canonical TLV are covered
by this case. For example, in ModBus and MQTT pro-
tocol [18] the value of the length field measures the size
of remaining fields.

o Examples of Case 2: This case allows the L field to
measure the size of the entire packet. One example is
the IP protocol where the length field tells the size of the
whole packet.

« Examples of Case 3: This case covers special situations
where the L field may not measure the size of the V'
field exactly; instead, there is a fixed gap. For example,
in CoAP, there are two extra fields between the token
length field and the token field. On the other hand, if the
V field contains some data, and the L field specifies the
size of a buffer that the receiver should allocate, L(V)
could be larger than the actual size of the V field. Some
proprietary protocols fall in this category [19].

Remark 1. We assume that a given protocol can only follow
one of the above cases, but we do not know exactly which
case the protocol follows. This assumption is reasonable since
a protocol usually grants the unique meaning of an L field.

Remark 2. The definition of ETLV uses the V function, which
assumes the unit in bits. Yet, we DO NOT know in advance
the unit of the L field used in an unknown protocol, so we
cannot tell its value V(L) in terms of bits. For instance, the
L field in the TCP header is measured in the unit of 4 bytes.
Therefore, the three cases described above could all fail if we
cannot automatically infer the right unit used in the protocol.
We solve this problem in our later algorithms.

With ETLV defined and explained, our goal in the rest
of the paper is to develop a tool, called, Auto-ETLV, that
automatically extracts the L field and the V field in an
unknown binary protocol following the ETLV packet structure
(Sections IV and V). We also evaluate the accuracy of Auto-
ETLV (Section VI).

IV. PROBLEM ANALYSIS

To automatically extract the information about the L and
V fields from an unknown binary protocol, we need to tackle
the following challenges. First, the boundaries of each field
are unknown and may appear at any bits in a packet. Second,
different protocols may use different units when calculating
the value of the L field. Third, while we assume that a given
protocol can only use one of the three cases in ETLV, we do
not know whether or not the protocol actually follows, and
even it does, we do not know which exact case of ETLV it
uses.

To address the above challenges, we first analyze the
properties of the V and L functions. Based on the analysis,
we then solve the unit problem when calculating the value of
the L field. Finally, we develop a method to find out the most
likely ETLV case that the protocol follows.

A. The Property of V(L), L(L)

Usually not all bits in the length field are used to represent
the size of the value. For example, to represent a value 7, the
L field of 5-bits would be 00111. In other words, only the
last three bits are used for calculation. We call the effective
length field L as the binary string of the L field excluding
preceding 0s. Note that V(L) = V(L).

Lemma 1. If a protocol uses ETLV and the effective length
field L is in unit of bits, then any packet P satisfies the
following constraint:

L(L) < LIB(L(P))) +1, 2)
where L,V, and B are the functions defined in Section III-B.

Proof. Since the protocol follows ETLV, we only need to
verify Equation (2) in the three cases defined by ETLV.

1) Case 1: V(L) = L(V) < 2L(P).

2) Case 2: V(L) = L(P) < 2L(P).

3) Case 3: V(L) = L(V)+ C < L(P) + L(P) = 2L(P).
Note that C' is a constant offset and should not be larger
than L(P).

Therefore, we have V(L) < 2L(P) in all cases. Thus, the
number of bits that are needed to represent V(L) = V(L)
is at most the number of bits used to represent 2L(P), or
equivalently, £(L) < L(B(L(P))) + 1. O

Note that even if L is not measured in bits, Lemma 1 still
holds since V(L) can only become smaller if measured in
other units.

B. The Unit Problem

Based on Lemma 1, we know the upper bound of £(L). But
we still do not know how to determine the actual unit of the
L field. Without knowing its unit, we cannot determine V(L)
and thus cannot tell if a packet falls into any of the three cases
of ETLV.

We use two examples to illustrate the unit problem. If a
field F' uses 64 bits and the corresponding L field tells the
length of this F' field, then L = 1000000 if the unit of L is
bits, L = 100000 if the unit is 2 bits, L = 10000 if the unit
is 4 bits, L = 1000 if the unit is in bytes, and so on. If the
field F' uses 40 bits and the corresponding L field tells the
length of this F field, then L = 101000 in bits, L = 10100 in
2 bits, L = 1010 in 4 bits, L = 101 in bytes, and so on. From
the above examples, we can see that no matter what unit a
binary string uses, only the number of trailing zero’s matters.
Everything before the trailing zeros is unchanged. We call the
bits before the trailing zeros core bits. The core bits in the
first example are 1, and the core bits in the second example
are 101.

Therefore, given a L field binary string, we can shift its core
bits to the left to get the length values in different units. The
good news is that £(L) is bounded based on Lemma 1. Thus
the number of possible shifts/units that we need to check is
also bounded. If any shift matches one of three cases across all
packets, then we know this shift value implies the most-likely
unit used by the L field, which is in 25"/ bits.

C. The Property of V(L), £([:) in Different Units

We refer the shift mentioned above as unit size, e.g.,
unit size = 0 means that the L field is measured in 2° = 1 bit.
Lemma 1 tells the bound of the length of the L field in the
unit of bits. Next, we show that a tighter bound if a different
unit is used.

Lemma 2. If a protocol uses ETLV, then the effective length
field L of packet P, satisfies the following constraint:

L(L) < L(B(L(P))) — unit size + 1, 3)

no matter what unit [Az uses.

Proof. No matter what the unit L uses, if we shift L to left
with unit size, V(L << unit size) will return the value of L
in bits. In other words, £(L) + unit size = L(L << unit size)
since both measures the same field in bits. For instance, if
L uses byte as the unit and L = 100 (i.e., 4 bytes), then
V(f/ << unit size) = V(100000) = 32 (i.e, 32 bits). Since
Lemma 1 is true when the unit is in bits, we have

L(L) 4 unit size = L(L << unit size) < L(B(L(P))) + 1.

O

D. Constant Difference

From the previous analysis, given an L field in a binary
string, we may have a small set of shifted values, and one
of them will be the correct version of V(L) in terms of bits.
We have the following lemma that can help us make the right
decision.

Lemma 3. Assume that a protocol uses ETLV and its packet
P = |Fy|L|F5|V|F3|. Denote the blocks after the L field as
R = |F5|V|F3|. Then, L(R) — V(L) is a constant.

Proof. We only need to verify the three cases defined in ETLV.
1) Case I: Since V(L) = L(V), we have

L(R) = V(L)

L(FVEs) — L(V)
L(Fy) + L(V) + L(Fs) — L(V)
L(F) + L(F3)

2) Case 2: Since V(L) = L(P), we have

L(R) — V(L) = L(R) — L(P)
= (L(P) — L(F1L)) — L(P)
= —L(F1)—L(L)

3) Case 3: Since V(L) = L(V) + C where C is a constant,
we have

L(R) = V(L) = L(R) = (L(V)+C)
+L(V) + L(F3) — (L(V) +C)
+L(Fs) +C

We can see that no matter which case a packet follows, £L(R)—
V(L) always remains constant. O

Utilizing the above analytical results, we next develop the
Auto-ETLV tool that automatically extracts the L field from a
binary protocol if it follows the ETLV structure.

V. ALGORITHM DESIGN IN AUTO-ETLV
A. A High-Level Overview

For an unknown protocol, the L field may appear anywhere
in a packet, and as such, we have to loop through each bit
of the entire packet. Based on previous analysis, for each
bit, we only look at L(B(L(P)))+ 1 consecutive bits (called
check string and denoted by cs), since £(L) is bounded by
this number. Then we generate each suffix from cs. For each
suffix, we can apply the left shift operation to get different
possible values for different units. Then we use the shifted
string to calculate V(shifted string) — £(remaining bits), and
we call this value the key difference. If all packets have the
same key difference at a certain bit position (bpos) and certain
shift number. Then we can infer that this bpos is a possible
location for the length field, with the unit in 257¢/¢ bits.

While the above idea seems straightforward, it requires us
to generate many key differences for each location. Denote
b = L(P). We then need to loop through b bits. For each
bit, we look log(b) bits check string and generate log(b)
suffixes. For each suffix, we have log(b) shifts. Thus we have
O(blog(b)?) possible key differences for every packet. This is
a huge number! Nevertheless, we will show that as the number
of packets fed to the algorithm increases, this number will drop
dramatically with a proper filtering mechanism to exclude the
impossible bit positions.

Next, we introduce the algorithm details for extracting the
length field from ETLV. The algorithm is mainly composed
of two steps: the Generation (G) step and the Verification (V)
step, and only one of them is executed for each packet. The
G step is executed with small probability since it takes most
of time to generate all key differences at every bit position
for the L field. The V step is executed with high probability
since it only verifies what we have generated from the G step
and filters out impossible bit positions. The above generation-
verification method can reduce the running time and the
number of possible bit positions for the L field dramatically.

B. Global Dictionary

The core data structure we use is the global dictionary
(GD). Each entry in the GD has a key field and a value
field. The key field consists of (bpos, shift), and the value field
consists of (index, Kcounter, a list of tuples), where each tuple
is represented by (key difference, l, r, Dcounter).

Recall that we loop through all bits in a packet, and for
each bit position bpos, we have a check string, with which all
suffixes are generated. For each suffix, we apply the left shift
operation to generate the values of the binary string of this
suffix in different units. Then we use each value of the shifted
suffix to calculate the key difference. Note that for each suffix,
they can be shifted different times, thus for each (bpos, shift)
combination, we will have a set of key differences. We need to
store all the information for every (bpos, shift) combination.
Thus we use (bpos, shift) as the key of the GD.

The value field includes a list of rfuples, each denoted
by (key difference, 1, r, Dcounter). Note that key difference is

Algorithm 1: Main Structure

Algorithm 2: Generation

input : a set of packets
output: the possible locations for the L field
begin
GD=;
for index, p in enumerate(Packets) do
if uniform(Q, 1) < m then
| Generation(p, index);
else
| Verification(p, index);

| return GD.maxDCounter();

calculated by V(shifted string) — £(remaining bits), and / and
r together denote the inferred interval (i.e., the left bit position
and the right bit position, respectively) for the left boundary
of the L field. We also include index to record the timestamp
when this GD entry is created and Kcounter to record the
number of times that the list of tuples has been updated.
Dcounter is another counter recording the number of times
that the same key difference value has been encountered.

C. Main Structure of Auto-ETLV

Algorithm 1 shows the main structure of our solution. It first
creates a global dictionary to store all information for possible
length field locations generated from the G step. In the main
loop, the algorithm chooses one of the two steps for each
packet with probability. As the number of packets increases,
the probability that we choose the G step becomes smaller. It
is worth noting two facts. First, the V step only verifies all
possible locations generated from the G step, so the V step
will not take any effect until we run the G step. Second, we use
a dynamically adjusted probability for executing the G step,
ie., ﬁ in Algorithm 1. While this method leads to good
experimental results, users may use a different probability
value. No matter which probability value to use, we need to
ensure that the G step is executed at least several times because
otherwise, there is nothing to verify in the V step.

In the end, the Dcounter reflects the likelihood that the
represented bit location is the correct location of the L field.
After processing all packets, we report the location(s) that have
the highest Dcounter value(s).

D. Generation Step

In the Generation step (Algorithm 2), we loop through all
bits in a packet. For each bit position (bpos), we calculate
all key differences for different possible shifts. Since the L
field is bounded, the check string (cs) for generating possible
differences is also bounded. If we assume that the current bpos
is the bit right after the L field, then the possible L fields are
all suffixes of cs. Furthermore, we need to infer the unit of
the length field. The good news is that the L field is bounded;
hence we can determine all possible values for all possible
units by shifting the suffix to the left, bit by bit, for the length
of cs times. After this, we have all possible values for possible

input : p: a packet
index: i-th packet
begin
cl = L(B(L(p)))+1;
for 0 <= bpos <= L(p) do
cs = p[max(0,bpos-cl), bpos];
r = L(P)-bpos
suffix_set = a set of suffixes of cs
diff_dic = {}
for suffix in suffix_set do
for 0 <= shift <= cl - L(suffix) do
key = (bpos, shift)
item = (#Of preceding zeros of suffix,
L(suffix),
V((suffix << shift) - r)), 1)
diff_dic[key].append(item)

for key, val in dif dic do
| GD.update(index, key, val, append = True)

units at this bpos. Accordingly, we can calculate and update
the difference to the global dictionary.

Note that in the G step, we need to consider a list of
(key difference, 1, r, Dcounter). The fields I, r together denote
the inferred range of possible length for the L field. Intuitively,
since each suffix could be a potential L field, the length of the
true L field is at least as large as the length of the suffix. On
the other hand, not all bits in the L field are usually used
in a packet (e.g., the first several bits of the L field are 0’s).
Thus the length of the true L field is at most as large as the
length of the suffix plus the preceding zeros. The key difference
is calculated by V(shifted string) — £(remaining bits), and
Dcounter counts how many times we have encountered the
same key difference value. The timestamp records when this
key was added to the global dictionary for the first time.

We also allow bpos to be as high as the length of the packet
(L(p)). This is because bpos is assumed to be the bit right after
the L field, and we need to handle the (rare) case that a packet
ends with the L field, i.e., no bit after the L field. Allowing
bpos to be L(p) will not cause any problem, since we only
process bits right before the bpos.

E. GD update

Algorithm 3 will be called in both the G and V steps. The
only difference is that this function could increase the size of
the list of fuples under the given key in the G step, but not
in the V step. To update the GD, if the key does not exist
in GD, we set its first part of dictionary value as (index, 1),
where index works as the timestamp indicating when this key
is created and 1 is the current value of Kcounter. Note that we
use packet index as the timestamp because they mean the same
thing for packet trace analysis. If the key already exists in the
GD, we first increase KCounter by 1. Then we check if the

Algorithm 3: GD.update

Algorithm 4: Verification

input : index: ¢-th packet
key: (bpos, shift)
val: a list of key difference
append: bool variable
begin
if key in GD then
for v in val do
for gv in GD[key][1] do
if v.diff == gv.diff then
gv.l = min(gv.l, v.l)
L gv.r = max(gv.r, v.r)
gv.Dcounter++
else if append == True then
| GDlkey][1].append(v)

if gv ever updated then
| GDlkey][0].Kcounter++

else
| GDlkey] = ((index, 1), val)

list of tuples already includes the same key difference. If yes,
then we increase the corresponding Dcounter by 1 and update
I and r. Otherwise, we add a new tuple ((key difference,l,r,1)
to the list of fuples, where Dcounter is set to 1.

To update ! and r, imagine that we have two L fields
from two packets. Let s; and so be such two binary
strings representing the two L fields. Then the length of
the L field will be at least max(L(s1), L£(s2)), and at most
min(L(preceding zeros + s1), L(preceding zeros + s3)).

FE. Verification Step

The verification step (Algorithm 4) is almost the same
as the G step, except that we only verify what we have
generated from the G step. Thus we only loop through the
global dictionary. Since the key contains bpos and shift, we
can generate all values for the specific unit calculated from
the shift value. Then we can use the values to calculate the
differences.

We use an additional condition to clear up GD at the end of
the verification step. The Kcounter tells the number of times
we have encountered this key in the global dictionary. The
index records the first time that this key was added to GD. The
last condition check in Algorithm 4 determines whether the
number of encountered times is less than 90% of times since
it appeared the first time. The value of 90% is empirical. The
idea is that if this key is not encountered often, then this key
should be dropped from GD. Note that if the L field matches
the size of the V field in all packets, then the number of times
that the key encountered for the correct L field passes the
verification should be 100%. If any packet has the L field
mismatching the V' field, then the number of times the key
encountered for the correct L field will not be 100%. Note that

input : p: a packet
index: i-th packet
begin
ol = L(B(L(p)))+1:
for bpos, shift in GD.key do
cs = p[max(0,bpos-cl), bpos];
r = L(P)-bpos
suffix_set = a set of suffixes of cs
diff_dic = {}
for suffix in suffix_set do
if shift <= cl - L(suffix) then
key = (bpos, shift)
item = (#Of preceding zeros of suffix,
L(suffix),
V((suffix << shift) - r)), 1)
diff_dic[key].append(item)

for key, val in dif dic do

| GD.update(index, key, val, append = False)
timestamp = GD[key].Index
hit = GD[key].Kcounter

if (index - timestamp)*0.9 > hit then
| GD.remove(key)

this cleanup step is to speed up future processing by reducing
the size of GD.

G. Time Complexity

We analyze the time complexity of processing each packet.
The required storage space is essentially the size of the global
dictionary. The space cost is negligible, considering that the
number of possible combinations for the key field is not large
for any given protocol.

Let b be the size of the largest packet, d be the number
of entries (keys) in the global dictionary, and k be the largest
number of tuples in the value fields of the global dictionary.

1) Complexity of the G Step: In the G step, we need to
loop through all the bits, and for each bit, we need to generate
all possible suffixes of cs. Since ¢s is bounded by log(b) +
1, we have log(b) + 1 suffixes and it takes O(log(b)?) time
to process them. For each suffix we can shift log(b) + 1 —
L(suffix) = O(log(b)) times to get different values in different
units, that are used to calculate the key differences. So it will
take O(log(b)?) time.

For updating the [value, it requires the knowledge about
preceding zeros at current bpos. However, this value can be
pre-computed by simply looping through all bits once, which
takes O(b) time.

For the GD.update function, we need to compare the list of
key differences generated from the current packet and the list
of key differences in the GD. Since the maximum size of the
former list is O(log(b)?), and the maximum size of the latter
list is O(k), the comparison takes O(klog(b)?) time.

In total, the G step takes O(bklog(b)?) time.

2) Complexity of the V Step: In the V step, we need to
loop through all entries in the global dictionary. Since d is the
number of entries in the global dictionary, we can follow the
similar analysis as in the G step to conclude that the V step
takes O(dklog(b)?) time.

Note that the V step will be executed more frequently than
the G step. In addition, since it can quickly reduce the size of
GD due to the filtering mechanism, the value of d is expected
to be small.

VI. EVALUATION RESULTS

We test Auto-ETLV on several well-known protocols: Mod-
Bus, IP, TCP and MQTT. We pretend that we know nothing
about these protocols. For each protocol, we collect 2000
packets, which are used as the input to Auto-ETLV.

A. Accuracy
TABLE I
LOCATION OF THE L FIELD
Protocol | Proposed Locations (unit) | True Location (unit)

TCP [(96, 96), 99] (32 bits)
[(96, 96), 100] (16 bits)
[(96, 96), 101] (8 bits)
[(96, 96), 102] (4 bits)
[(96, 96), 103] (2 bits)
[(96, 96), 104] (1 bit)
P [(21,14),31] (8 bits)
ModBus [(16, 40), 47] (8 bits) (32, 47] (8 bits)
MQTT [@, 9), 15] (3 bits) [8, 15] (3 bits)

The L field is represented by [the range of the left boundary, the location
of the right boundary].

[96, 99] (32 bits)

[16,31] (8 bits)

Table I shows the locations for the L field of a protocol
proposed by Auto-ETLV and the ground truth. The proposed
location is labeled by [(x1,22),x3](z4), Where (z1,x2) de-
notes the left boundary of the L field (i.e., the left boundary
should fall in the range from x;-th bit to z5-th bit), x5 denotes
the right boundary of the L field, and z4 is the unit of the L
field. The ground truth is denoted by [y1, y2](y3), where y;
and y- are the left boundary and the right boundary of the L
field, respectively, and ys3 is the unit of the L field.

From the table, we see that Auto-ETLV can produce the
correct locations for correct boundaries and units for IP, Mod-
Bus, and MQTT. It also produces a small interval containing
the correct left boundary of the L field. Note that identifying
the exact left boundary of the L field is difficult if no packet
in the input data uses the maximum length. In this case, the
prefix of the L field will be filled with zeros, and we do not
have enough information to figure out the exact location of
the left boundary.

It is interesting that Auto-ETLV returns six possible loca-
tions for the right boundary of the L field in TCP. This is
not an error but instead discloses the complex TCP header
structure. This result is because TCP has six reserved bits right
after the L field, which are set to zeros in all the TCP packets
of our input data. In this case, any of 6 bits can be reasonably

interpreted as a valid right boundary of the L field, where
different right boundaries correspond to different units, i.e., 1
corresponds to byte, 10 corresponds to 4 bits, 100 corresponds
to 2 bits, and 1000 corresponds to bits. In addition, the interval
of the left boundary (96, 96) indicates the exact location of the
left boundary of the L field.

Note that the TCP header certainly follows ETLV structure
since the length field measures the entire header, but TCP does
not. There is an extra variable-sized data block that comes after
the TCP header. Since it is not a fixed-length block, the key
difference will not be computed correctly even if the current
bpos points to the correct length field location. However, there
is a portion(roughly 30%) of TCP packets that do not come
with data (data block with size 0) in the input packets. Thus
the Dcounter will be correctly updated with 30% of times.
This is high enough to be recognized as a meaningful output
as long as we do not filter out this information (controlled by
the filtering rate discussed later). From the TCP example, we
can see that even if only a portion of packets (e.g., only TCP
packets without data block) follow the ETLV structure, our
method can still correctly identify the L field.

Auto-ETLV has two parameters to set: the first one is the
probability of calling the G step, and the second one is the
proportion of the total number of packets that determines when
we should drop a key from the global dictionary. The default
value for the first is set dynamically to m, and the
default value for the second is set to 0.9. Before we discuss
the impacts of these two parameters, we show the dynamic
changes of the global dictionary and the maximum Dcounter
in the global dictionary.

B. Dynamics of GD

o TCP—-header
MQTT

AN Modbus
——————— P

2500
|

2000
|

1500
|

Count
1000
|
,(b

N
B

Amlmmnzi:ha

500
|

oy

o 500 1000 1500 2000

Index
Fig. 1. Size of global dictionary as we process more packets

Recall that we have a filtering mechanism that reduces the
size of the GD in the V step. Figure 1 shows the changes in
the size of the GD vs. the total number of parsed packets.
Every spike in the GD size indicates execution of the G step,
since the G step is the only step that generates key difference

=
“‘ © TCP-—header
— MQTT
A Modbus
——————— P
o
o o
=
S o
3 2
o
© ©o o ©o © © o © o o o o o o o d
w
A A A A A A A A A s A A A A A oa
<
T T T T T T T T
(o] 50 100 150 200 250 300 350

Fig. 2. Maximum Dcounter after processing each packet

information at different bpos. We can also see that the GD
size drops shortly after every G step.

Although we use 2000 packets for each protocol, it may be
unnecessary to use so many packets to get a stable answer. In
fact, some protocols only take less than 60 packets to get the
final result. Figure 2 shows the size of key difference informa-
tion with the highest Dcounter value for each protocol as the
number of parsed packets increases. For MQTT, Auto-ETLV
only takes 4 packets to reduce 11212 possible key difference to
the only possible solution, and after that this answer remains
unchanged. Of course, the threshold for the number of required
packets depends on the diversity of packets, e.g., different
packet sizes. Our experimental results suggest that, in general,
tens or hundreds of packets should be enough to obtain a stable
answer for most protocols.

C. The Impact of Parameters

- © TCP-header
= ° + MQTT
A Modbus
=< P
8
2y
2
8 PaN
S x
Ty
£ =3
£
g
5
5
=
- °
<
4 >
N °
]
. + S b3 4
T T T T T
0.1 0.01 0.001 1e—-04 1e—-05
G step prob

Fig. 3. Running time vs. the probability for executing the G step, the filtering
rate = 0.9.

Auto-ETLV uses two parameters: the probability for exe-
cuting the G step and the filtering rate. The first parameter
determines the probability that the G step is executed for a

s | ° © TCP-header
* + MQTT
A Modbus
o < |IP
s
g °
S x
g
3
Y
E 24 °
=
E >
E
=
o
s
x 5
PAN
o 4+ + ES S PN
T T T T T
0.5 0.6 0.7 0.8 0.9

filter rate

Fig.

Running time vs. the filtering rate, the probability for executing G
1
step

[ES

1+index*

packet. The second parameter specifies a proportion value, and
if a dictionary key is updated less frequently than this value
since this key was created, we drop the key from the GD.
To assess the impact of these two parameters on the average
running time, we use 1000 packets for each protocol and set
the filtering rate to 0.9 when we test the running time of Auto-
ETLV with different G-step probabilities. In addition, we hold
the G-step probability to m when we test the running
time for different filtering rates. To get the average running
time, we run 10 experiments for each parameter configuration
on a laptop computer (MacOS, 2.2GHz Dual-Core Intel Core
i7, 8GB 1600MHz DDR3). The results are shown in Fig. 3
and Fig. 4. From the figures, we can see that Auto-ETLV runs
very fast and returns a converged result in less than 2 minutes.

Note that the above two parameters have no impact on the
correctness of the algorithm. They only serve as tuning knobs
to speed up the algorithm. A natural question is: why should
we need to use the G-step probability instead of just running
the G step once? We made this decision for precaution. The
inputs to the algorithm may contain some corrupted packets
where the L field in the packets does not correctly measure
the size of its value field. We call these packets unexpected
packets. If we happen to run the G step on an unexpected
packet, then the global dictionary will not contain the correct
key difference information, and all verification will fail to
update the correct key difference. To prevent this potential
problem, we need to run the G step more than once, and
we adopt a probability value that changes depending on the
proportion of unexpected packets in the inputs. If the value is
set to 1, there is no optimization (w.r.t. running speed), and
every packet will use the G step. The result will be accurate
but with a much longer running time. On the other hand, if the
value is set to 0, then the G step will be executed only once,
and the rest packets are processed with the V step. Auto-ETLV
will run very fast, but the result might be incorrect?.

2When the packet processed by the G step is corrupted, Auto-ETLV will
fail to return right answer.

Regarding the filtering rate, we can set this value to any
value rather than 1. When the filtering rate is set to 1, we must
drop any key if it is not updated in any packet. This might
slow down the algorithm in case we drop a key that needs
to be added back to the GD again at a later time. Like the
G-step probability, the filtering rate depends on the proportion
of unexpected packets in the inputs. When this value is set to
0, the size of GD will never be reduced, and in this case, the
V step and the G step will have the same running time.

In summary, if the user can provide a good input where
the proportion of unexpected packets is very small, they can
choose a large filtering rate and a small G-step probability to
greatly speed up the running time.

VII. DISCUSSION

This section explains why ETLV is important and how it
can be used in practice. We also discuss the limitation of our
work.

As we have illustrated in Section III, ETLV is a pretty
general data format that covers the structure of many protocols.
The concept of ETLV does not require the TLV fields to be
consecutive in a data packet and assumes the default unit of
length calculation may vary. Such generality is critical for
protocol reverse engineering because we do not know the
actual locations of the TLV fields or the unit that the protocol
uses to calculate the length. With the identified LV fields, we
can leverage this information for many practical applications.

One possible application is for security tests of unknown
protocols. Network protocol fuzzing [20] is a technique that
sends random data to the protocol port and checks whether or
not the protocol responds. With some fields identified with our
method, we may effectively generate packets that are likely to
follow the legitimate format of the protocol, resulting in more
targeted testing of the protocol. Another possible application
is to enhance existing clustering-based PRE tools. PRE tools
such as those in PI [3] cluster packets based on their similarity.
With the help of our solution, the identified fields can be used
as a significant feature to validate whether or not the clustering
results are reasonable.

While the concept of ETLV and our algorithms are im-
portant and useful, they are only one of the building blocks
in the arsenal for PRE. Our method alone cannot fulfill the
complex task of PRE because real-world protocols usually
involve much rich information that ETLV may not model.
In many cases, PRE requires expert domain knowledge and
human intervention. Our future work will integrate the method
presented in this paper into some open-source PRE tools.

VIII. CONCLUSION

In this paper, we extended the concept of TLV to cover
the packet structure of a large category of protocols. Based
on the extended TLV (ETLV), we proposed an algorithm
called Auto-ETLV to extract the length field from unknown
binary protocols. Auto-ETLV not only identifies the left and
right boundaries of the length field but also infers the unit
that the length field uses. We test Auto-ETLV on several

binary protocols, such as TCP, MQTT, and ModBus. The
experimental results demonstrate that Auto-ETLV can quickly
identify the length field for all the protocols under test. The
returned answers are correct in the sense that the answers
not only include the ground truth but also cover all possible
protocol specifications consistent with the parsed packets.

REFERENCES

[1] S. Shalunov, “‘internet netflow statistics — internet2 netflow
organization’,” accessed July 2021. [Online]. Available: http://www.
internet2.edu/presentations/fall-03/20031013-NetFlow-Shalunov.pdf

[2] X. Li and L. Chen, “A survey on methods of automatic protocol
reverse engineering,” in 2011 Seventh International Conference on
Computational Intelligence and Security. 1EEE, 2011, pp. 685-689.

[3] M. A. Beddoe, “Network protocol analysis using bioinformatics algo-
rithms,” Toorcon, 2004.

[4] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Automatic protocol
reverse engineering from network traces.” in USENIX Security Sympo-
sium, 2007, pp. 1-14.

[5] S. Tao, H. Yu, and Q. Li, “Bit-oriented format extraction approach for
automatic binary protocol reverse engineering,” let Communications,
vol. 10, no. 6, pp. 709-716, 2016.

[6] J. Duchene, C. Le Guernic, E. Alata, V. Nicomette, and M. Kaéniche,
“State of the art of network protocol reverse engineering tools,” Journal
of Computer Virology and Hacking Techniques, vol. 14, no. 1, pp. 53-68,
2018.

[7]1 S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of molecular biology, vol. 48, no. 3, pp. 443-453, 1970.

[8] T.F. Smith, M. S. Waterman et al., “Identification of common molecular
subsequences,” Journal of molecular biology, vol. 147, no. 1, pp. 195—
197, 1981.

[9] J. Antunes, N. Neves, and P. Verissimo, “Reverse engineering of

protocols from network traces,” in 2011 18th Working Conference on

Reverse Engineering. 1EEE, 2011, pp. 169-178.

J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: Automatic

extraction of protocol message format using dynamic binary analysis,”

in Proceedings of the 14th ACM conference on Computer and commu-

nications security, 2007, pp. 317-329.

Z. Lin, X. Jiang, D. Xu, and X. Zhang, “Automatic protocol format

reverse engineering through context-aware monitored execution.” in

NDSS, vol. 8. Citeseer, 2008, pp. 1-15.

C. Y. Cho, D. Babi¢, P. Poosankam, K. Z. Chen, E. X. Wu, and

D. Song, “{MACE}:{Model-inference-Assisted} concolic exploration

for protocol and vulnerability discovery,” in 20th USENIX Security

Symposium (USENIX Security 11), 2011.

J. Davies, Implementing SSL/TLS using cryptography and PKI.

Wiley and Sons, 2011.

, “Radius protocol security and best practices,” Microsoft Corpo-

ration, 2002.

V. Z. Attar and P. Chandwadkar, “Network discovery protocol 1ldp and

1ldp-med,” International Journal of Computer Applications, vol. 1, no. 9,

pp. 93-97, 2010.

A. Kuktin, “Binary protocol design: Tlv, Itv, or else?” online

discussion in 2014, accessed in Sept. 2021. [Online]. Avail-

able: https://groups.google.com/g/comp.arch.embedded/c/_b53-Y71k4Y/
m/iLhkW7Ltjh4] ?pli=1

C. Bormann, A. P. Castellani, and Z. Shelby, “Coap: An application

protocol for billions of tiny internet nodes,” IEEE Internet Computing,

vol. 16, no. 2, pp. 62-67, 2012.

D. Soni and A. Makwana, “A survey on mqtt: a protocol of internet of

things (iot),” in International Conference On Telecommunication, Power

Analysis And Computing Techniques (ICTPACT-2017), vol. 20, 2017.

J. Halon, “Reverse engineering network protocols.” [Online]. Available:

https://jhalon.github.io/reverse-engineering-protocols/

V.-T. Pham, M. Bohme, and A. Roychoudhury, “Aflnet: a greybox fuzzer

for network protocols,” in 2020 IEEE 13th International Conference on

Software Testing, Validation and Verification (ICST). 1EEE, 2020, pp.

460-465.

[10]

(11]

[12]

[13] John

[14]

[15]

(16]

[17]

[18]

[19]

[20]

