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Abstract—Mobile crowdsensing (MCS) has recently found
many applications in environmental monitoring and large-scale
surveillance by recruiting crowd workers for data collection
and labeling. The quality of labelled data from unknown crowd
workers, however, is hard to guarantee. Therefore, it is critical
to design a mechanism that can automatically make correct
decisions from diverse and even conflicting labels from the crowd.
To tackle the challenge, we propose a new algorithm, EFusion,
which infuses knowledge from domain experts by asking them to
check a small number of labels from the crowd. Taking advantage
of cheaper but unreliable crowd workers as well as expensive
but reliable experts, EFusion can greatly improve the accuracy
in discovering the ground truth of classification-based mobile
crowdsensing tasks. EFusion utilizes a probabilistic graphical
model and the expectation maximization (EM) algorithm to
infer the most likely expertise level for each crowd worker,
the difficulty level of tasks, and the ground truth answers.
EFusion has been evaluated using real-world case study as well
as simulations. Evaluation results demonstrate that EFusion can
return more accurate and stable classification results than the
majority voting method and state-of-the-art methods.

I. INTRODUCTION

A. Motivation

With technological advances in mobile devices such as
smart phone, wearable devices and in-vehicle sensors, mobile
crowdsensing (MCS), a special crowd sourcing paradigm
that uses the information from a large number of sensing
devices and human intelligence to solve difficult problems,
has attracted unprecedented interest. MCS has been used in a
variety of applications, including environmental monitoring,
infrastructure monitoring, and social sensing [1], [2], [3],
[4]. Traditionally, MCS recruits a crowd of mobile users to
capture data of interest and input their own judgment (i.e.,
intelligence) to facilitate the processing of big data from the
crowd. The quality of data/judgment from a user obviously
depends on whether or not the user is knowledgeable about the
subject matter. Accordingly, there have been research efforts
in matching qualified users and given tasks [5].

Recently, there is a surge of interest in another form of MCS
where the sensing crowd consists of “smart” devices/programs
that possess machine intelligence. One example is the smart
cameras that recognize human faces or detect urgent events
such as a car collision. Another example is WeChat mini
program pet recognition, which can tell, with a level of
confidence, the breeds of dogs or cats from the pictures taken
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Fig. 1: EFusion in the work flow of MCS.

with phones. Those smart devices/programs have a certain
level of intelligence, and as such they can be treated as another
source of information critical to MCS applications.

Take MCS to detect distracted driving as an example. A
typical work flow is as follows: An end user (e.g., police
department) submits an MCS job (e.g., detecting distracted
driving at a busy intersection during a time period). The MCS
platform uses a task dispatcher [6], [7] to assign sensing
tasks to mobile users or smart surveillance cameras, which
are called crowd workers or simply workers of MCS. After
receiving the tasks, the crowd workers capture pictures of
distracted drivers (i.e., labelled data with crowd workers’ local
judgments), and the end user makes final decisions based on
the labelled data from crowd workers. The typical work flow
of MCS consists of Steps 1, 2, 3, and 6, as shown in Fig. 1.

In the typical work flow of MCS as above, a core challenge
is that the labelled data from the crowd may be error prone.
The correctness of answers from humans is subject to their
domain knowledge; the accuracy of answers from smart de-
vices/programs is limited by their lower computational power
and storage. In addition, optimized models [8] might not be
easy to implement with smart devices; hence the accuracy of
their answers is generally inferior than that obtained in cloud
data centers. Therefore, MCS needs a “quality assurance”
mechanism to verify the results from crowd workers. Clearly,
depending on the professionals to monitor and check all results
from crowd workers is prohibitive and defeats the original
purpose of using cheap crowd workers. The question we will

                                                                                answer in this paper is: how can we infuse the knowledge



learned with a small amount of reliable labels from the
professionals to automatically correct crowd workers’ labels?
B. Overview of the Proposed Solution

Let Expert be a group of professionals who have expert
domain knowledge. Here we do not distinguish individual
experts in this paper, and use Expert to denote them as a
whole. Answers from Expert are assumed to be more accurate
than those from crowd workers, and the knowledge from
Expert could help us make better decisions. Following this
idea, we propose a new algorithm, EFusion, which infuses the
knowledge from Expert into the unreliable data from the crowd
to automatically identify and eliminate incorrectly labelled
data. The work flow of MCS with EFusion (Steps 4, 5) is
shown in Fig. 1.

Since it is unrealistic to ask Expert to answer all ques-
tions due to the higher cost (e.g., higher hourly rate) for
professionals, EFusion takes advantage of both Expert and
crowd workers. For the labelled data from crowd workers with
unknown expertise levels, we assign a small portion of data to
Expert and ask Expert to judge the labels. The answers from
Expert are explored to infer the most likely expertise level for
each crowd worker, as well as the ground-truth answers.

The contributions of the paper includes:
• We design a new algorithm, EFusion, which utilizes the

knowledge from Expert to gauge answers from unreliable
distributed devices and workers. By taking advantage of
both types of contributors, EFusion greatly improves the
likelihood in discovering the ground truth from MCS.

• We solve the non-trivial inference problem in EFusion,
which infers the ground truth labels, the expertise level
of each contributing smart device/crowd worker, and the
difficulty level of questions.

• We perform a thorough evaluation of EFusion using real-
world case study as well as simulations. Evaluation re-
sults demonstrate that EFusion outperforms other popular
methods, such as majority voting, the DS method [9],
the method for Conflict Resolution on Heterogeneous
Data (CRH) [10], and the Generative model of Labels,
Abilities, Difficulties (GLAD) [11].

II. RELATED WORK

Existing work can be roughly divided into two categories:
discovering truth in MCS and utilizing expert knowledge to
improve quality of answers from crowd sourcing.

In the first category, the goal of proposed solutions is
to handle the situation where the ground truth is unknown
and data contributed from multiple workers in MCS are
inconsistent or even contradictory. Wang et al. [5] used the
EM algorithm to determine whether one user’s answer can
be accepted as the truth. Peng et al. [12] extended the work
in [5] by establishing a connection between the quality of
user’s sensing data and their reward. Liu et al. [13] estimated
the truth based on the estimation of data quality from different
users in an online manner. To get the accurate estimation of
user’s reliability, a model which combine multiple properties is
also proposed in [10]. In a more specific setting where there

are correlations among monitored entities, Meng et al. [14]
formulated an optimization problem to find truth. Under the
same assumption, Wang et al. [15] provided a scalable ap-
proach that exploits dependencies between observed variables
to improve fact-finding accuracy of social sensing data.

In the second category, the problem of infusing professional
knowledge into crowd workers has been investigated [16] [8].
The key idea is to combine answers from different groups
(workers and experts). This concept has been used in ac-
tive learning to obtain the effective model on truth discov-
ery [17] [8]. Tang et al. [18] proposed a semi-supervised
approach to combining the labels from experts and workers
so that the consensus labels can be inferred. Sheshadri and
Lease [19] provided an open source shared task framework
to compare the performance of various statistical consensus
methods. Both solutions assumed that experts always know the
ground truth. In addition to these works, Aroyo and Welty [20]
aggregated the labels from experts and workers by k-score to
train a model for semantic interpretation of sentences.

EFusion belongs to the second category. However, the
purpose and usage of experts labels in EFusion are different
from existing methods. In active learning, the purpose of
incorporating expert opinions is to select the most informative
questions for participants to label, so that a better classification
model could be trained. In our algorithm, however, the expert’s
opinion is used to directly infer more truthful labels. Further-
more, it can automatically infer the ground truth and expertise
level of workers in MCS. Meanwhile, the Expert opinion in
our algorithm does not necessarily represent the ground truth,
while in others methods it does.

III. DETAILS OF EFUSION

A. Problem Formulation

We consider a batch of m classification tasks in MCS to be
labeled. To improve the quality of answers from workers, we
try to gain some expertise knowledge on the batch by asking
Expert to label a (small) subset of k instances, where k < m.
Since the focus is on crowd workers’ reliability, we do not
distinguish individual experts in this paper, and use Expert
to denote them as a whole. Let the total number of crowd
workers be n.

Denote the answer of crowd worker i for question j by
lij , 1 ≤ i ≤ n, 1 ≤ j ≤ m. Denote Expert’s answers as el, 1 ≤
l ≤ k. For ease of presentation, we assume that lij and el are
binary values, while the model can be easily extended to multi-
class classification tasks, as discussed later in Section III-E.
lij = 0 means user i gives the wrong label to question j,
otherwise lij = 1. Similarly, el = 0 if the Expert gives wrong
label to question l, else el = 1 Note that lij(1 ≤ i ≤ n, 1 ≤
j ≤ m) and el(1 ≤ l ≤ k) are inputs to EFusion.

Given the batch of questions, we assume that Expert has a
higher chance of giving correct answers (answers are closer
to the ground truth) than crowd workers. We thus introduce
the concept of expertise level: the higher the expertise level,
the higher the probability of returning a correct answer.
Associated with a crowd worker i is the expertise level



αi ∈ (−∞,+∞), and associated with Expert is the expertise
level αE ∈ (0,+∞), where +∞ means that the labeler
always answers correctly and −∞ means that the labeler
always answers incorrectly. A positive/negative expertise value
implies the labeler is more likely to return a correct/incorrect
answer for a specific question. We assume a priori distribution
for αi and assume a priori value for αE , which is larger
than the prior mean of αi. Since the difficulty level of a
question may impact the probability that a correct answer can
be obtained, we introduce a positive parameter βj(1 ≤ j ≤ m)
to denote the difficulty level of question j. We assume a priori
distribution for βj . βj ∈ (0,+∞), where a small βj means
that it is easier to answer the question correctly by the same
worker. Note that the difficulty of a question, by definition, is
considered to be a feature of the question and independent of
the crowd workers. The likelihood of a truthful answer from
worker i to question j is jointly decided by i’s expertise level
and j’s difficulty level.

The notations used in the paper are listed in Table I.

Problem 1. Given the probabilistic graphical model in Fig-
ure 2 and the observed values lij(1 ≤ i ≤ n, 1 ≤ j ≤ m)
and el(1 ≤ l ≤ k), what are the ground-truth answers
Zj(1 ≤ j ≤ m)? what are the posteriori estimates of αi?
what are the posteriori estimates of βj?

Fig. 2: Graphical model of Zj , αi, αE , lij , βj and ej . Note
that only the shaded part are observed.
B. Probability of Correct Answers

In general, the more difficult a question, the lower the
probability that a correct answer can be obtained; and the
higher the expertise level, the higher the probability that a
correct answer can be obtained. As such, we propose to model
the probability that a correct answer is returned using a logistic
function. It is worth noting that the logistic function and
its variants have been widely used in financial domain for
calculating probability of correct prediction [21] as well as in
similar problem settings [11].

In particular, the probability that Expert returns the correct
answer to question j is modeled as:

p(ej = Zj |Zj , αE , βj) =
1

1 + e−αE/βj
, j ∈ {1, . . . , k}. (1)

The probability that crowd worker i returns the correct
answer to question j is modeled as:

p(lij =Zj |Zj , αi, βj) =
1

1 + e−αi/βj
. (2)

TABLE I: Summary of main notations

Notation Description
αi the expertise level of worker i
lij the answer worker i gives for question j
αE the expertise level of Expert
βj the difficulty of question j
n the number of workers
m the number of questions in the batch
k the number of questions answered by Expert
Zj the ground truth answer for question j
el the answer of Expert for question l

C. Main Algorithm

We use the Expectation Maximization (EM) [22] algorithm
to solve Problem 1. To simplify notation, we denote ᾱW =
{α1, . . . , αn}, ᾱ = ᾱW ∪ {αE}. Starting with initial prior
values of α1, . . ., αn, αE , β1, . . ., βm, the EM algorithm
iterates through the following E step and M step.

1) The E Step: Given observed values of {l11, . . . , lnm}
and {e1, . . . , ek}, we first calculate the posterior probabilities
of all true answers Zj using the estimated ᾱ and βj’s from
the last M step. Denote l.j = {l1j , . . . , lnj}. Without loss of
generality, we assume the first k questions are answered by
Expert as well as crowd workers. For each j ≤ k, we have

p(Zj |l.j , ej , ᾱ, βj)

∝ p(Zj)p(ej |Zj , αE , βj)

n∏

i

p(lij |Zj , ᾱW , βj)
(3)

where p(Zj |ᾱ, βj) = p(Zj) because of the conditional in-
dependence assumptions from the graphical model. Similarly,
for each question j(k < j ≤ m) answered only by crowd
workers, we have:

p(Zj |l.j , ᾱ, βj)

∝ p(Zj)
n∏

i

p(lij |Zj , ᾱW , βj)
(4)

2) The M Step: The auxiliary function Q is defined as the
expectation of joint log likelihood of the observed and hidden
variables (l.j ,Zj), given the parameters (ᾱW ,βj).

Q(ᾱW , βj)

=E[ln
k∏

j=1

p(ej , l.j , Zj |ᾱ, βj)
m∏

j=k+1

p(l.j , Zj |ᾱ, βj)]

=
m∑

j=k+1

E[ln p(Zj)] +

i=n,j=k∑

i=1,j=1

E[ln p(lij |Zj , ᾱW , βj)]+

k∑

j=1

E[ln p(Zj)p(ej |Zj , αE , βj)]+

i=n,j=m∑

i=1,j=k+1

E[ln p(lij |Zj , ᾱW , βj ],

(5)

where the expectation is computed from the posterior proba-
bilities in the E step. Let αp, βp denote the α and β estimated



by the previous iteration. The first part of Equation (5) can be
expanded to Equation (6) as follows:

m∑

j=k+1

E[ln p(Zj)]

=
m∑

j=k+1

(p(Zj = 0|L, αp, βp) ln p(Zj = 0)+

p(Zj = 1|L, αp, βp) ln p(Zj = 1)),

(6)

in which L means all the labels given for the (k + 1)-th to
m-th questions.

The second part and the last part of Equation (5) have
similar form (i.e., the only difference is on the range of j
value) and thus can be expanded in similar form shown in
Equation (7):∑

ij

E[ln p(lij |Zj , ᾱW , βj ]

=
∑

ij

(p(Zj = 0|L, αp, βp) ln p(lij |Zj = 0, αi, βj)+

p(Zj = 1|L, αp, βp) ln p(lij |Zj = 1, αi, βj)),

(7)

where p(lij |Zj = 0, αi, βj) and p(lij |Zj = 1, αi, βj) can be
attained with Equation (1). Without causing confusion, we here
slightly abuse the notation by using L to denote all the labels
given for the questions in the same range as that of j.

The third part of Equation (5) can be expanded to Equa-
tion (8):

k∑

j=1

E[ln p(Zj)p(ej |Zj , αE , βj)]

=
k∑

j=1

(p(Zj = 0|L, αp, βp) ln p(ej |Zj = 0, αE , βj)+

p(Zj = 1|L, αp, βp) ln p(ej |Zj = 1, αE , βj)),

(8)

where Equation (1) is used to calculate p(ej |Zj = 0, αE , βj)
and p(ej |Zj = 1, αE , βj).

Then we use gradient descent to find the values of ᾱW , βj

to maximize the function Q. Note that we assume the value
of αE is known and thus we do not update αE in the EM
algorithm. The algorithm iterates through the E step and the
M step until convergence. Here, convergence means that either
the number of iterations reaches a given maximum threshold
or the difference in learned parameters between consecutive
iterations falls within a given small threshold.

The posterior probabilities of Zj values are obtained after
the last (i.e., the one before the algorithm stops) E step. After
the last E step, for each question j(1 ≤ j ≤ m), we use
Equation (1) and Equation (2) to calculate the probability of
getting correct labels from workers and Expert, respectively,
and then choose the label with the highest overall probability
as the final label for this question.

D. Priors on Parameters

Both ᾱW and βj are continuous random variables, and we
used Gaussian priors on ᾱW , and truncated Gaussian priors
on βj’s such that all βj values are positive. In particular, we

assume that the expertise level of each worker follows a normal
distribution N (μ1, σ

2
1), and the difficulty of each question

follows a truncated normal distribution N (μ2, σ
2
2). Note that

Gaussian prior is a mathematically convenient and practically
reasonable assumption. The expertise level of Expert is as-
sumed to be known in advance, and is denoted as αE = α.
We set α >> μ1 since Expert has much more expertise than
crowd workers on average. The value of prior probabilities of
each class (i.e., p(Zj)) is also influential on the performance
of EFusion. So the task publishers who have some domain
knowledge on the assigned tasks can acquire better estimated
parameters by changing p(Zj) in the E-step.

E. Further Discussion

EFusion can be easily extended to handle scenarios in-
volving multi-class classification. Suppose that answers are
grouped into S categories. Given a question j, let its correct
answer be Zj . The probabilities that Expert and worker i gives
the correct answer can still be calculated with Equation (1) and
Equation (2), respectively. It is reasonable to assume incorrect
answers are equally probable. In other words, we have:

p(ej =s′|Zj , αE , βj) =
e−αE/βj

(S − 1)(1 + e−αE/βj )
,

j ∈ {1, . . . , k}, s′ �= Zj .

(9)

p(lij =s′|Zj , αi, βj) =
e−αi/βj

(S − 1)(1 + e−αi/βj )
,

i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, ...
(10)

Consequently, in the M step of EFusion, Equation (9) and
Equation (10) should be used to calculate p(ej |Zj , αE , βj)
and p(lij |Zj , ᾱW , βj) in Equation (5), and the Q value in
each iteration. The rest of EFusion remains unchanged.

IV. EVALUATION

A. Baseline Methods

For comparison, we implemented the following truth dis-
covery methods:

• Majority voting (MV): The final answer to a question
is the answer that appears the most of times among all
crowd workers. And all contributors are treated equally,
so there is no “Expert”.

• The DS method [9]: It uses full confusion matrices to
denote the expertise of each contributor, the EM algo-
rithm is used to obtain maximum likelihood estimates
of ground truth of polytomous classes problem under
medical background.

• Conflict Resolution on Heterogeneous Data (CRH) [10]:
This is a general model for truth discovery from multiple
sources that might have different data types. It uses an
optimization framework where truths and source reliabil-
ity are defined as two sets of unknown variables, with
the objective to minimize the overall weighted deviation
between the truths and the multi-source observations
where each source is weighted by its reliability.



• Generative model of Labels, Abilities, Difficulties
(GLAD) [11]: GLAD makes decisions regarding ground
truth, difficult level of questions, and expertise level of
workers, using a similar graphical model as in EFusion
but without any inputs from Expert.

In the datasets used in the case studies and simulations, the
ground-truth answer of each question is given. This allows us
to compute exactly the estimate errors of EFusion and other
baseline methods. We adopt the following measures to evaluate
the performance of different methods.

• Accuracy: It is defined as the ratio of correct answers
from different methods over the total number of questions
in the batches.

• F-measure: It is the harmonic mean of precision and
recall, where precision is the proportion of predicted
positive labels and real positives labels, and recall is
the proportion of real positive labels that are correctly
predicted positive.

B. Case Study

We carry out a MCS case study, detection of distracted
driving. As discussed in the motivating example, distracted
driving is a main cause of accidents in our daily transportation.
Even if many cities have law enforcement, most distracted
drivers remain uncaught due to the high cost in detecting
distracted driving. One solution is to launch a MCS campaign
by recruiting volunteers or using smart cameras on streets to
report distracted drivers and upload images during a certain
time period.

To emulate a MCS campaign, we use a public dataset [23]
which consists of 606 photos, each recording a potential
distracted driver. The images and the ground truth labels can
be found from [23]. To emulate the action of workers, we
posted the labelling task with a fee in CrowdFlower [24] and
asked crowd workers to determine whether or not the driver in
each of the 606 photos is fatigue or distracted. In this way, we
collected 15150 answers in total from 25 workers, and apply
different methods to determine the final answers.

We set p(Zj) to 0.5, βj to 1 for j = 1, . . . ,m, where
m = 606. We set αE = 3 so that Expert has around 90%
chance to give a correct answer for each question. Since we
know the ground-truth labels, answers from Expert are simu-
lated by returning the correct answers with 0.9 probability.
The results for the case study are summarized in Fig. 3,
where Fig. 3(a) and Fig. 3(b) demonstrate the performance
of different methods with different numbers of workers in
terms of accuracy and F-measure. In the figures, EFusion is
shortened as EF. Note that we only draw the performance
of EFusion when Expert answers 40% questions, and use
an error bar to present the accuracy and F-measure achieved
by EFusion when the percentage of questions answered by
Expert changes from 20% to 80%. The precision and recall of
different methods are summarized in Table II.

As shown in Figure 3(a) and Figure 3(b), EFusion out-
performs all the baseline methods for different numbers of
workers. On average, EFusion has about 10% improvement

over the best baseline CRH in terms of accuracy and F-
measure. Majority voting performs the worst among all the
methods in this case study. Notably, both the accuracy and F-
measure of CRH remain the same as the number of workers
changes. This is because the performance of CRH is mainly
subject to the data heterogeneity, while in this case only
one type of categorical data is involved. According to CRH
frame, the algorithm can infer a part of reliable workers, and
then detect truth only based on them. Note that having more
workers does not help for all schemes in this case. This is
because when the accuracy is around fifty-fifty, it appears
roughly half of the workers give the correct results regardless
the total number of workers.

We are interested in studying the trade off between accuracy
and knowledge infusion. As such, we introduce coverage rate
of Expert, defined as the percentage of questions answered
by Expert, to capture knowledge infusion. The results are
presented in Fig. 3(c). We can see that as expected, the more
questions answered by Expert, the more accurate the final
results. With more questions answered by Expert (e.g., higher
than 70%), the improvement in final accuracy diminishes. In
other words, the marginal utility of infusing expert knowledge
decreases. Such a relationship can be used to guide decisions
on how much expertise knowledge is needed. Furthermore,
EFusion has indeed utilized the knowledge from crowd work-
ers as the accuracy is consistently better than that relying on
Expert alone (e.g., 0.9 x coverage rage).

Since in the empirical studies we do not know the ground
truth about workers expertise and the difficulty levels of
questions, we cannot evaluate the performance of EFusion
with respect to the accuracy of inferred workers expertise
and questions difficulty levels. Next, we perform controlled
simulations to evaluate these two aspects.
C. Simulation Evaluation

In the simulation, 2000 questions are generated in total,
each having a binary answer. For ground-truth label of each
question, we set its value to 0 or 1 randomly with equal
probability. A total of 25 workers were simulated.

We first simulate a base case where majority voting can
achieve a reasonably good accuracy. We set the ground-truth
values of workers expertise αW following normal distribution
N (μ = 1, σ = 0.2) and set the value of Expert expertise
αE to 5(� ᾱW ) . The difficulty levels of the 2000 questions
in the batch are drawn from an independent truncated normal
distribution N (μ = 5, σ = 1). For each parameter setting, the
simulation is repeated 50 times to smooth out the variability
among trails. In each trail, we computed the accuracy, F-
measure for all methods, as well as the correlation between
the estimated expertise level, the estimated question difficulty
and their ground truth. The results in all the figures of this
section reflect the mean values from the 50 trails.

The accuracy and F-measure with 5 to 25 workers and
the accuracy under different Expert’s coverage rates are sum-
marized in Fig. 4. The simulation results further confirm
that: 1) For the accuracy and F-measure of the five methods,
EFusion outperforms all the baselines under different numbers



TABLE II: Performance Comparison on Precision and Recall Under Different Number of Workers

#Workers=5 #Workers=10 #Workers=15 #Workers=20 #Workers=25
Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

Method

MV 0.4528 0.5455 0.4364 0.5455 0.4561 0.5909 0.4727 0.5909 0.4510 0.5227
GLAD 0.5099 0.5359 0.4864 0.5957 0.6462 0.5725 0.6591 0.5800 0.6364 0.5957
DS 0.5524 0.5318 0.6818 0.5556 0.7045 0.5741 0.7273 0.5714 0.6364 0.5714
CRH 0.6818 0.6250 0.6818 0.6250 0.6818 0.6250 0.6818 0.6250 0.6818 0.6250
EF(20%) 0.7273 0.6400 0.7273 0.6667 0.7027 0.5909 0.7143 0.6818 0.7209 0.7045
EF(40%) 0.8409 0.7708 0.7442 0.7273 0.7727 0.6939 0.7955 0.7292 0.7727 0.7391
EF(60%) 0.8864 0.7959 0.8409 0.7400 0.7805 0.7273 0.8636 0.7451 0.8864 0.7500
EF(80%) 0.9459 0.7955 0.9091 0.8163 0.8500 0.7727 0.8409 0.8222 0.8444 0.8636

Note: the value in the parentheses after “EF” denotes the coverage rate of Expert in EFusion.
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(c) Performance of EFusion on detection of dis-
tracted driving when varying the Expert coverage
rate.

Fig. 3: The comparison of different methods when αW ∼ N (μ = 1, σ = 0.2), βj ∼ N (μ = 5, σ = 1), αE = 5.

of workers. 2) As the coverage rate of Expert increases,
EFusion achieves higher accuracy with different number of
workers. Detailed simulation results are given in Table III.

To evaluate the accuracy, we compute the root-mean-square
error (RMSE) between the worker’s expertise (/question’s
difficulty levels) estimated by EFusion and the corresponding
true values. Fig. 4(d) shows the RMSE with different numbers
of workers. It can be seen that both the estimated workers’
expertise and the estimated question difficulty are closer to the
corresponding true values as the number of workers increases.

To investigate the stability of EFusion, we simulate more
difficult settings where distributions of αW and βj vary. On the
basis of original distribution, we increase the variance of αW ,
increase the variance of βj , decrease the mean value of αW

to negative, and increase the mean value of βj in turn. Fig. 5
shows the performance of baseline methods and EFusion under
different αW , βj settings, using 40% coverage rate of Expert.
Fig. 5(a) and Fig. 5(b) show the results when the numbers of
workers are 5 and 25, respectively. From the figure, it can be
observed that EFusion gets higher accuracy than the baseline
methods under different settings when the number of workers
varies from 5 to 25. The performance of EFusion remains
stable even if αW and/or βj have a high variance.

V. CONCLUSIONS

Crowdsensing that uses the information from crowd workers
in finding answers from various sensing data has been applied
into more and more areas. Observing that domain experts
can return more reliable answers compared to the crowd, we
design a model, EFusion, that infuses the domain knowledge
into crowd’s answers so that the false answers could be
corrected automatically. Meanwhile, the expertise levels of

crowd workers and the difficulty level of questions will also be
inferred. The results demonstrate that in addition to the high
robustness and good performance in estimating parameters,
EFusion outperforms all the baseline methods in terms of
accuracy and f-measure.
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Fig. 4: The performance of different methods and the RMSE between estimated parameters and the corresponding true values
in the simulation when αW ∼ N (μ = 1, σ = 0.2), βj ∼ N (μ = 5, σ = 1), αE = 5.
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