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Abstract—An Autonomous Driving System (ADS) uses a
plethora of sensors and many deep learning based tasks to aid its
perception, prediction, motion planning, and vehicle control. To
ensure road safety, those tasks should be synchronized and use
the latest sensing data, which is challenging since 1) different
sensors have different sensing periods, 2) the tasks are inter-
dependent, 3) computing resource is limited. This work is the
first that uses Age of Information (AoI) as the performance
metric for task scheduling in an ADS. We show that minimizing
AoI is equivalent to jointly minimizing the response time and
maximizing the throughput. We formally formulate the AoI-
centric task scheduling problem. To derive practical scheduling
solutions, we extend the formulation and formulate the optimal
AoI-centric periodic scheduling problem with a given cycle. A
reinforcement learning-based solution is designed accordingly.
With experiments simulated according to the Apollo driving sys-
tem, we compare the scheduling performance of the AoI-centric
task scheduling with Apollo’s schedulers from the perspective of
AoI, throughput, and worst case response time. The experiment
results show that the maximum AoI in the proposed scheduling
solution with 4 cores is lower than that in Apollo’s schedulers
with 8 cores.

I. INTRODUCTION

A. Background

An autonomous driving system (ADS) consists of many

inter-dependent software components to perform various tasks

such as perception, motion planning, and control. Fig. 1

shows the algorithm stack of Apollo [1], an open autonomous

driving system. In recent years, various models and algorithms

have been developed for individual tasks to achieve shorter

execution time and higher accuracy. When such tasks are put

into the algorithm stack, task scheduling can greatly affect the

data freshness in making driving decisions, which essentially

affects driving safety.

In a broad sense, scheduling of autonomous driving tasks

falls into the category of task scheduling for real-time stream

processing, where the inter-dependency of tasks is described

by a directed acyclic graph (DAG). Traditional DAG schedul-

ing, i.e., scheduling tasks with precedence constraints on mul-
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Fig. 1: The autonomous driving System of Apollo.

tiple processors, has been studied for years and is recognized

as an NP-complete problem [2]–[8]. The performance metrics

commonly considered in this area are response time and

throughput. Nevertheless, these performance metrics are not

sufficient to guarantee driving safety.

To ensure driving safety, control commands, such as steer-

ing, throttle, and brake commands, should be generated based

on the latest environment information. Untimely driving ac-

tions may lead to accidents. Thus, task scheduling of ADSs

should aim at minimizing the gap between the vehicle’s driving

decision basis and the real environment. Such a criterion

is largely ignored in the literature of autonomous driving

scheduling field. This motivates us to introduce a new per-

formance metric for task scheduling in autonomous driving,

namely, age of information (AoI) [9], which is defined as

the time difference between the time when the control task

generates control commands and the minimum timestamp

of raw sensor data used in generating control commands.

Intuitively, the smaller the AoI, the faster the vehicle reacts

to traffic conditions, and the safer the ADS.

B. Motivating Example

To illustrate the criticalness of AoI for driving safety in

ADSs, we conduct obstacle avoidance experiments on Com-

monRoad [10], a collection of benchmarks for motion planning
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Fig. 2: Simulated driving results of the ego vehicle under three cases with AoI being 100ms, 200ms, and 300ms.

on roads. The scenarios are either transformed from real traffic

data (e.g., NGSIM dataset [11]) or manually created based on

real road networks. We select two typical scenarios as shown

in Fig. 2 (a) and Fig. 2 (e) to illustrate the motion planning

results under different levels of AoI. We adopt BMW320i and

the Kinematic Single Track Model as the vehicle model, and

the A∗ algorithm [12] as the motion planner.

We deliberately let the ego vehicle plan its trajectory based

on the environmental information collected 100, 200 and 300
ms ago, and then simulate driving according to the planned

trajectories in the current environment. In other words, we plan

trajectories of the ego vehicle for both scenarios under three

cases with AoI being 100, 200 and 300 ms respectively.

• For the case with AoI = 100 ms, when the ego vehicle

drives according to the trajectory generated by the motion

planner, it is still collision-free in both scenarios, as shown

in Fig. 2 (b) for scenario 1 and Fig. 2 (f) for scenario 2,

since the position of the key obstacle perceived by the ego

vehicle is only slightly deviated from the ground-truth.

• For the case withAoI=200ms (Fig. 2 (c) (g)), though it is

collision-free, the distance between the ego vehicle and the

key obstacle at the meeting point in both scenarios is much

shorter than that in the case ofAoI=100ms.

• For the case with AoI = 300 ms, the collision indeed

happens as shown in Fig. 2 (d) (h). This is due to the

wrongly perceived position of the key obstacle. The ego

vehicle even speeds up “before” the key obstacle enters the

lane in scenario 1, which may lead to a severe collision in

real-world driving.

From the above example, we can conclude that the deviation

of the perception of the environment caused by the high

AoI level can easily mislead the autonomous vehicle with an

illusion that it is safe, which can cause serious safety hazards

and even traffic accidents. Therefore, limiting and reducing

AoI as much as possible should be regarded as one of the key

goals of the task scheduling in autonomous driving systems.

C. Challenges and Contributions

While DAG scheduling and AoI minimization are both

broadly studied topics, AoI minimization in DAG scheduling

for ADSs has rarely been investigated. In particular, we are

faced with the following challenges that no existing solution

can be directly applied. First, the objective of our scheduling

problem is affected by not only the scheduling decisions for

various inter-dependent tasks across multiple cores but also the

periodically updated sensing data. The asynchronous sensing

frequency from multiple sensors on an autonomous vehicle

further complicates the problem. Second, from the practical

point of view, it is not feasible to optimize and implement the

schedule over a very long scheduling horizon. Thus, we need

to develop a solution that balances the AoI and computational

complexity. Tackling such challenges, this paper makes the

following contributions:

• We first introduce age of information (AoI) as a new per-

formance metric for task scheduling in ADSs and show that

the objective of minimizing the maximum AoI is equivalent

to jointly maximizing the throughput and minimizing the

response time, where throughput and response time are often

separately considered in conventional task scheduling.

• We formally formulate the AoI-centric task scheduling prob-

lem as an ILP problem, referred to as ILP-AoI, where the

optimal solution in a small scheduling horizon can serve as

the lower bound of the large scheduling horizon. We extend

the formulation into AoI-centric periodic task scheduling

formulation, referred to as ILP-AoI-II.

• To efficiently solve the ILP-AoI-II problem, we develop a

novel reinforcement learning (RL) based scheduler. Using

double deep Q network (Double DQN) to solve the hard

combinatorial optimization problem, our RL solution fully

leverages the properties derived from ILP-AoI-II formulation

and the domain knowledge of ADSs to effectively capture

the system states and reduce the search space of actions.

• We perform comprehensive evaluation of the AoI-centric

task scheduling where the experiments are designed ac-

cording to Apollo driving system. The results show our

scheduling solution with 4 cores outperforms the default

schedulers in Apollo with 8 cores.

II. PROBLEM FORMULATION

In this section, we formulate the AoI-centric task scheduling

problem in autonomous driving systems. For ease of reference,



TABLE I: Main Notations

Symbol Definition

ap The latest completion time of tasks
in the cross-cycle round on core p

AoIk Maximum AoI observed in the k-th execution
bik , cik Starting time and ending time of task i’s k-th execution
eij ∈ E Directed edge between Vi and Vj

H Hyper-period of the sensors in ADS
K, K0 The maximum number of rounds in T and T0

m,n, P The number of sensors, tasks, and cores respectively
skz Timestamp of sensor z’s raw data used in the k-th execution
Sk Smallest timestamp of raw data used in the k-th execution
T Scheduling horizon
T0, T ′

0
Cycle length and extended cycle length

Vi ∈ V The i-th task in task set V
xikpt Binary decision about whether task i’s k-th

execution starts on core p at time t
ykk′z Binary decision about whether task n’s k-th

execution uses sensor z’s k′-th sensing data
τz Sensing period of sensor z
ξi Worst case execution time of task i
µk Binary decision about whether the k-th

execution is a dummy round

main notations are summarized in Table I. To save space, we

omit the notations related to RL which are easy to follow.

A. ADS Modelling

An ADS mainly consists of three parts, the sensor kit, the

algorithm stack, and actuators which are controlled by control

commands as shown in Fig. 1. Specifically, the algorithm

stack, modelled as a DAG, is represented by a directed graph

G = (V,E), where V = {V1, V2, ..., Vn} is the set of n tasks,

and E is the set of direct execution dependency between two

tasks. We note that Vn usually represents the motion planning

task in an ADS. We assume that there are m sensors in the

sensor kit which provide input data periodically to vertices in

the DAG.

The control task is usually executed periodically in exist-

ing ADSs, e.g., every 10 ms. Considering that the motion

planning/replanning task may not be able to generate a new

trajectory every 10 ms, the motion planning usually plans the

trajectory which can be used for a longer time. Before the

motion planning task generates a new trajectory, the control

task will be executed multiple times and generate control

commands based on the previously generated trajectory

We conduct two one-minute trips of the autonomous vehicle

driven by Apollo using its default task scheduler. As shown

in Table II, the number of executions of the control task is

about 10 times that of the planning task. In the worst case, a

trajectory could be used by the control task more than 20 times

due to the prolonged time interval between two executions

of the motion planning task. From the perspective of driving

safety, this should be avoided as much as possible. We aim to

tackle this problem in this paper.

B. Definition of AoI in ADSs

Denote cnk as the completion time of the k-th execution

of the motion planning task, and sk1, sk2, . . . , skm as the

timestamps of raw data directly or indirectly used by the k-th

execution of the planning task from m sensors.

TABLE II: The execution of the planning task vs. the control

task in Apollo.

The number of executions Used times1

Planning Control Min. Max. Avg.

986 9851 6 26 9.9

978 9776 7 23 10.3

1 The minimum/maximum number of times where a trajectory planned by
the planning task is used by the control task.

Let Sk = min{sk1, sk2, . . . , skm} be the oldest timestamp

of the sensor data that the planning task uses in its k-th

execution. The control task uses the trajectory planned by the

planning task in its k-th execution until the (k + 1)-th output

generated at cn(k+1). Thus, the AoI of the system during

t ∈ (cnk − cn(k+1)] is t − Sk. The maximal AoI observed

by the control task during the time interval (cnk, cn(k+1)] is

AoI(k+1) = cn(k+1) − Sk. Note that AoI(k+1) = cn(k+1) −
Sk = (cn(k+1) − cnk) + (cnk − Sk) where cn(k+1) − cnk is

the time interval between two outputs of the planning task,

the reciprocal of the throughput, and cnk −Sk is the response

time. Thus, optimizing AoI is equivalent to jointly optimizing

throughput and response time in task scheduling of ADSs.

C. Formulation of AoI-centric Task Scheduling in ADSs

In our scheduling problem, we consider a long schedul-

ing horizon, [0, T ], in which task n needs to be executed

multiple times. We let τz be the sensing period of sensor z

(∀z ∈ [1,m]), and without loss of generality, we let τ1 be the

maximum sensing period. Moreover, to simplify the analysis,

we assume that all sensors generate the initial sensing data

at time 0 and S0 = 0. Assume that the computing unit for

autonomous driving has a total of P cores. Let ξi be the

execution time of task i. Then at most K = ⌊ PT∑
n

i=1
ξi
⌋ rounds

can be executed during T . Due to sensing data availability

and dependency in the DAG, it is possible that less than K

rounds can be executed during T . For readability, we first

formally formulate the problem by assuming that K rounds

can be executed. After that, we will present how to add more

constraints to the formulation covering the case where less

than K rounds can be executed. Next, for Sk with k ≥ 1, we

let ykk′z be a binary decision variable as follows,

ykk′z =











1 if task n’s k-th execution uses sensor z’s

k′-th sensing data

0 otherwise

where 1 ≤ k′ ≤ Kz = ⌊ T
τz
⌋. Since task n uses data from

every sensor only once in each execution and it shall use the

most recent data from any sensor, we have
Kz
∑

k′=1

ykk′z = 1, ∀z ∈ [1,m], ∀k ∈ [1,K], and

Kz
∑

k′=1

ykk′z×k′ ≤

Kz
∑

k′=1

yk+1,k′,z×k′, ∀z ∈ [1,m], ∀k ∈ [1,K].

Next, by the definition of Sk, we have

Sk ≤

Kz
∑

k′=1

[(k′ − 1)× τz × ykk′z], ∀z ∈ [1,m], ∀k ∈ [1,K].
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Fig. 3: A demonstration example, where V
j
i means the minimum timestamp of sensing data that Vi uses in its execution is j.

Let bik be the starting time of task i’s k-th execution. If task

i takes data of sensor z as one of its inputs directly, we have

bik ≥

Kz
∑

k′=1

[(k′ − 1)× τz × ykk′z], ∀k ∈ [1,K].

Let cik be the completion time of task i’s k-th execution, then

cik = bik + ξi (1)

Since the starting time of task j cannot be earlier than the

completion time of task i if task j depends the output of task

i, we have

cik ≤ bjk, if eij ∈ E,

Since the completion time of task i′s (k + 1)-th execution

cannot be earlier than its k-th execution by, we have

cik ≤ ci(k+1), ∀i ∈ [1, n], ∀k ∈ [1,K − 1].

We define xikpt as a binary decision variable as follows.

xikpt =











1 if task i’s k-th execution starts

on core p at time t

0 otherwise

Since task i’s k-th execution can be performed only once, we

have
P
∑

p=1

T
∑

t=0

xikpt = 1, ∀i ∈ [1, n], ∀k ∈ [1,K] (2)

based on which we can further define

bik =
P
∑

p=1

T
∑

t=0

[t× xikpt], ∀i ∈ [1, n], ∀k ∈ [1,K].

To ensure that any core p only executes at most one task at

time t, we have
n
∑

i=1

K
∑

k=1

t
∑

t′=max(0,t−ξi)

xikpt′ ≤ 1, ∀p ∈ [1, P ], ∀t ∈ [0, T ].

With the aforementioned constraints, we can formulate a

problem to minimize the maximum AoI with the objective

min max
k

(cnk − Sk−1). (3)

For the case where only less than K rounds are executed

during T , we can handle it by allowing a few dummy rounds

starting and ending at time 0. We define a binary variable µk

where µk = 1 if the k-th round is actually executed, 0 for

otherwise. Then we can modify Constraint (1) to

cik = bik + µkξi. (1’)

Constraint (2) is then modified to
P
∑

p=1

T
∑

t=0

xikpt = µk, ∀i ∈ [1, n], ∀k ∈ [1,K]. (2’)

To enforce that dummy rounds are at the beginning, we can

set µ1 ≤ µ2 . . . ≤ µK = 1 and cnK ≥ T .

We refer to the above formulation as ILP-AoI. Note that

we can obtain the formulation of maximizing the throughput,

referred to as ILP-Throughput, if we change the objective to

max
1

T

K
∑

k=1

µk. ( 3’)

If we change the objective to

min max
k

(cnk − Sk) ( 3”)

we can obtain the formulation of minimizing the worst case re-

sponse time (WCRT), referred to as ILP-WCRT. In Section V,

we will present the performance of ILP-AoI, ILP-Throughput,

and ILP-WCRT to demonstrate the tradeoff among AoI,

throughput, and worst case response time.

ILP-AoI defines the general form of the problem. However,

the scheduling problem becomes computationally intractable

when T is large since the number of variables in the ILP

problem is O(nP 2T 2 + PT 2m). A practical solution, from

the viewpoints of both computational overhead and real-world

implementation, is to derive a periodic scheduling where each

period is small. We will formally define and formulate the

optimal periodic scheduling problem in the following section.

D. Demonstration Example

We demonstrate different scheduling solutions for a simple

system with three tasks as shown in Fig. 3 (a), where V1

and V2 are driven by sensors with the sensing period of 3
and 6 respectively, and the execution of V3 depends on the

outputs of V1 and V2. P is set to be 2 and T is set to be

25 where 4 rounds are executed. We illustrate the schedule

and corresponding system AoI over time under the earliest-

start scheduling in which ready tasks are executed as early as



possible, and AoI-centric scheduling formulated in ILP-AoI.

Fig. 3 (b) depicts the system AoI over time where we can

see that the maximum AoI is 17 in earlist-start scheduling

and 13 in AoI-centric scheduling. The obtained schedules

from earliest-start scheduling and AoI-centric scheduling are

illustrated in Fig. 3 (c) and (d) respectively. Furthermore, a

AoI-centric periodic scheduling can be obtained as shown in

Fig. 3 (e) by delaying the starting time of V2’s first execution

by one time slot, which does not change the maximum AoI

compared with the solution obtained from ILP-AoI.

III. AOI-CENTRIC PERIODIC TASK SCHEDULING

In this section, we first formally define a periodic schedule,

then extend the formulation in ILP-AoI into the formulation

for optimal AoI-centric periodic scheduling.

Definition 1. A task schedule is a periodic schedule with cycle

length T0 if it satisfies the following conditions: For any task

i, 1) if it starts at time t on core p, then task i starts again

at time t + T0 on core p; 2) for every sensor z used by task

i, if the timestamp of sensing data from sensor z is sz when

task i starts at time t, then the timestamp of sensing data from

sensor z must be sz + T0 when task i starts at t+ T0.

By definition, a periodic schedule can be obtained by repeat-

ing a schedule, denoted as π0, in time intervals [rT0, (r+1)T0]
for r ∈ N where each time interval is referred as a cycle. We

now define an optimal periodic schedule as follows.

Definition 2. A periodic schedule with cycle length T0 is an

optimal periodic schedule if the maximum AoI in one cycle

with cycle length T0 is the minimum.

The problem becomes how to determine an appropriate T0

and construct an optimal schedule π0 for a given T0. We now

discuss the selection of T0. According to Definition 1, if the

sensing data of a sensor is available at t, it must be available

at t+ T0 again. Thus, T0 must be a common multiple of the

sensing periods of all sensors. To this end, we define hyper-

period as follows.

Definition 3. The hyper-period denoted as H is the least

common multiple of sensing period τz, ∀z ∈ [1,m].

With Definition 1 and Definition 3, T0 should be qH for

q ∈ N+. Next we discuss the schedule π0 for one cycle.

At this point, one may assume that ILP-AoI can be directly

applied by setting the time horizon as T0 and the maximum

AoI for π0 will be the maximum AoI in the entire periodic

schedule. However, such a claim is not valid due to two

implicit conditions in the formulation.

Firstly, the formulation in Section II implicitly enforces a

complete round, i.e., if a task in the DAG finishes its k-th

round, all tasks in the DAG shall finish its k-th round. This

means that some cores may be idle before T0 as there is no

sufficient time to finish a complete round. The reason behind

this is that any task finished after T0 will not affect the AoI.

However, in the periodic schedule, we do need to consider the

possibility of having a round in which some tasks start before
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Fig. 4: A periodic schedule with cycle length T0.

T0 and task n ends after T0. We refer to such a round as a

cross-cycle round.

Secondly, referring to Eq. 3, we assume that S0 = 0. This is

reasonable for a schedule from time 0 because the first output

of motion planning is only available at cn1. However, in a

periodic schedule, S0 6= 0 when we consider the AoI of the

first round in later cycles. If we directly apply the formulation

in ILP-AoI to derive the schedule in a cycle T0 and repeat the

obtained schedule to other cycles, the maximum AoI in other

cycles may be different from that in [0, T0].
The above analysis shows the necessity to modify the

formulation so that it can be used to construct π0. Assume

that there are K0 rounds in one cycle. We first address

the issue caused by cross-cycle rounds. Our solution is to

extend the time horizon for periodic scheduling from [0, T0]
to [0, T0 +

∑

i ξi] so that we can quantify the impact of the

cross-cycle round on the AoI of the following cycle. We denote

T ′

0 = T0 +
∑

i ξi. For each core p, we further use ap to

represent the latest completion time of tasks in the cross-cycle

round on core p. We note that some tasks of a cross-cycle

round assigned to a core may finish before T0, i.e., ap ≤ T0,

and some tasks assigned to a core may finish after T0, i.e.,

ap > T0. We have the following constraint:
T ′

0
∑

t=0

xikpt(t+ ξi) ≤ ap, ∀i ≤ n, ∀k ≤ K0, ∀p ∈ [1, P ]. (4)

Now let us take a look at the cores with ap > T0. In order

to make a periodic schedule, i.e., π0 for [0, T0] is also the

schedule for [rT0, (r + 1)T0] for any r ∈ N+, π0 should not

assign any task to p during the time interval [0, ap−T0]. Thus,

we have the following constraint:

ap − T0 ≤

T0
∑

t=0

xi1ptt+ (1−

T0
∑

t=0

xi1pt)T0, ∀i ≤ n (5)

We note that according to Constraint (5), for those cores

with ap ≤ T0, tasks can be assigned to them at t = 0.

When the first round of the first cycle finishes, the AoI is

AoI1 = cn1−S0. Let us consider the second cycle. The (K0+
1)-th round is the first round in the second cycle. According to

Definition 1, we have cn,K0+1 = cn1+T0. When the (K0+1)-
th round finishes, the AoI will be AoIK0+1 = cn,K0+1 −
SK0

=cn1 + T0 − SK0
. In order to make a periodic schedule,

we should have AoI1 = AoIK0+1, which is cn1−S0 = cn1+
T0 − SK0

. In other words, we should have S0 = SK0
− T0.

By adding constraints (4) and (5) and setting S0 = SK0
−T0,

we have a new formulation for periodic scheduling, referred

to as ILP-AoI-II. According to the setting of S0, we have the

following lemma.



Lemma 1. ILP-AoI-II, through solving a scheduling problem

with K0 rounds, gives the optimal schedule with K0+1 rounds

where the (K0 + 1)-th round is obtained by repeating the 1st

round at time T0.

We use π∗

0 to denote a schedule derived based on ILP-AoI-

II with the time horizon [0, T ′

0]. To build a more intuitive

understanding, one periodic schedule with cycle length T0 is

shown in Fig. 4. We have the following lemma.

Lemma 2. By repeating π∗

0 at time rT0 for r ∈ N+, we can

obtain a periodic schedule π with cycle length T0.

Proof. To prove this lemma, we only need to prove that when

we repeat π∗

0 at time 0, T0, 2T0, . . ., we can obtain a periodic

schedule, i.e., no two tasks will be assigned to the same core

at any time. This is guaranteed by constraints (4) and (5).

Consider the r-th cycle started at time (r − 1)T0. For each

core p, the tasks in the r-th cycle start to occupy core p from

time (r− 1)T0 +max(0, (ap − T0)). According to Constraint

(5), tasks in the r-th cycle could not occupy core p until rT0+
max(0, (ap−T0)). In other words, time interval [(r− 1)T0+
max(0, (ap − T0)), rT0 +max(0, (ap − T0))] on each core p

is only used by tasks in the r-th cycle. Thus, no two tasks will

be assigned to the same core at any time. Therefore, a periodic

schedule with cycle length T0 can be obtained by repeating

π∗

0 at time 0, T0, 2T0, . . ..

Based on Lemmas 1 and 2, we have the following theorem.

Theorem 1. The periodic schedule π obtained by repeating

π∗

0 at time rT0 for r ∈ N+ is an optimal periodic schedule

with cycle length T0.

IV. RL-BASED PERIODIC SCHEDULING

To solve the periodic scheduling problem effectively, we

leverage the recent advance in reinforcement learning (RL)

for solving hard combinatorial optimization problems, which

automates the search of heuristics by training an agent in a

self-supervised manner [13]. Here we use the RL agent to

replace the ILP solvers and get the periodic schedule in an off-

line way, rather than taking it as an online real-time scheduler.

That is, the cost of RL-based schedule implementation in ADS

can be omitted since it is trained offline.

We model the AoI-centric periodic scheduling problem as

a discrete-time Markov decision problem (MDP) and then

use Double DQN [14], an RL model suitable for discrete

action scenarios, to solve it. We consider the optimal schedul-

ing problem as an MDP with 4-tuple (S,A,P,R) on state

space S , action space A, transitional probability function

P : S ×A× S → R
+, and reward function R : S ×A → R.

And in our context, the agent, i.e., the task scheduler, receives

system state σl ∈ S from the environment E at step l, takes

scheduling action ηl ∈ A, and receives reward rl ∈ R at the

end of step l. Next, we define the key components in our RL

method as follows and then show our training algorithm.

Environment E: To represent the environment for task

schedule in [0, T0], we store the complete information of the

T0

Core 1

...
Core 2

0 tg1 g2

Core P

gP

...

...

...

...

...

a1
^ a2

^ aP
^

decision
point

Fig. 5: The environment of RL.

DAG and we use a P ×T ′

0 resource table. For each interaction

between the agent and E , we define a decision point (t, p),
indicating that core p is available for executing a task at time

slot t. Consequently, for step l, E provides the system state σl

at decision point (tl, pl) to the agent, then updates the resource

table according to action ηl, and uses the resource table to find

the next decision point (tl+1, pl+1), as shown in Fig. 5.

An episode for generating a schedule π0 with cycle length

T0 is completed when no resource is available on any core in

the future time slots. Specifically, assume gp (0 ≤ gp < T0)

is the time of the first execution on core p during the process

generating periodic schedule π0, then the same task will be

executed at gp + T0 on core p when we repeat π0 in the next

cycle. In other words, the resource on core p after time slot

âp = gp + T0 is not available for scheduling in π0. Since ap
represents the latest completion time of the cross-cycle round

on p, âp is an upper limit of ap to guarantee the periodic

constraints in (4) and (5) that we define in Section III. An

episodic process is shown in Fig. 5.

State Space S: The state space is designed for providing

the complete knowledge required for agent’s decision making.

To be specific, ∀σ ∈ S , σ=[[sensor related features], [task

related features], [core related features]], which is composed

of the following three parts:

• Sensor related features: For each sensor z, the features

include (1) the sensing period τz , (2) the current age of

information in terms of sensor z in the previous round and

the current round, t − s(k−1)z and t − skz respectively,

(3) the time gap between the current time and the time

when sensor z will provide new data τz − t mod τz .

• Task related features: For each task i, the features include

(1) the execution time ξi, (2) the time gap between the

current time and the time when task i starts in the current

round of execution (the value is −1 when this task has

not been scheduled in this round), (3) whether task i is

ready to be executed.

• Core related features: The features include the index of

the currently considered core p which is indicated by the

decision point (t, p), and the time gap between the current

time and the next available time of each core.

Action Space A: Based on the designed interaction pattern

with the environment, the agent only needs to pick one task to

execute at each decision point instead of selecting any subset

of n tasks that requires 2n action space. In our RL design,

we define the action space as η ∈ A = {0, 1, ..., n}, where



η = i, i ∈ [1, n] means the agent chooses to schedule task i,

and η = 0 means no task is scheduled at this decision point.

With this design, the action space increases linearly with the

number of tasks in the DAG. Finally, if task i has a direct data

dependency with sensor z and it is scheduled at time slot t,

it automatically takes the latest frame of sensor data, with a

timestamp of ⌊ t
τz
⌋ × τz .

Action Mask: In the action space A, some scheduling

actions may not be feasible or appropriate under a specific state

because not all tasks are ready at each step, e.g., dependencies

of some tasks are not satisfied yet. Allowing the agent to

explore infeasible actions will result in a massive meaningless

interaction experience, which hinders the agent from accessing

good strategies. Therefore, we provide an action mask at each

step to indicate the allowed actions. In our design, both the

state and the action mask are provided to the agent at each step,

which can significantly reduce the search space and speed up

the learning. Moreover, although the ILP solver cannot solve

the optimal periodic scheduling directly when T0 is large,

it can still provide knowledge to avoid meaningless actions,

which helps simplify the training process of RL. To be specific,

the RL agent can take the sensor data selection of the ILP-AoI-

II solution in a shorter time horizon as a good starting point. If

task i uses data from sensor z and
∑Kz

k′=1[(k
′−1)τzykk′z] = sz

in the ILP-AoI-II solution, then scheduling action of task i’s

k-th execution in the RL will not be legal in the action mask

before sz accordingly, because there is no reason to choose any

older data compared with the existing solution, which serves

as an expert experience.

Reward R: For the reward function, the most straightfor-

ward design is to return a signal based on the maximum AoI of

the generated π0 when one episode ends. However, this naı̈ve

scheme suffers from the sparse reward problem because the

reward signals are 0 in all but the last interaction. Therefore,

the agent can hardly learn which scheduling actions are good,

especially when the cycle length T0 is large. To solve this

problem, we adopt reward shaping as follows. Note that n

is the total number of tasks in the DAG, and λ is a scaling

parameter.

rl =











λn
AoIk

, ηl = n
λn

cn1+T0−SK0

, episode terminated

0, otherwise

(6)

In this reward function, when task n is scheduled at step l,

meaning that one round of execution from task 1 to task n is

just settled, the agent will get a reward according to the AoI

of this round, and when one episode ends, a periodic schedule

π0 is settled so that a final reward is given according to the

AoI of the first and the cross-cycle rounds, i.e., AoIK0+1 =
cn,K0+1 − SK0

=cn1 + T0 − SK0
. In both of these two cases,

we design the reward inversely proportional to the objective

so that the agent can be guided to learn how to minimize the

AoI when generating a periodic π0.

Training Algorithm: Based on the definitions above, we

design Algorithm 1 to train our RL-based scheduler. In this

algorithm, lines 7-17 facilitate experience replay to accelerate

Algorithm 1 The Procedure to Train A Double DQN Agent

Input: Scheduling parameters: DAG,P,T0, and a reference solu-
tion obtained by solving ILP-AoI-II in a small time period
Training parameters: replay buffer capacity Nr , number of
episodes M , exploration factor ǫ, training batch size Nb,
discount factor γ, target update frequency N−

Output: Periodic schedule π0

1: Initialize replay buffer D, Q network parameters θ, target net-
work parameters θ−

2: for episode e ∈ {1, 2, ...,M} do
3: Initialize environment E
4: for l ∈ {0, 1, ...} do
5: Select a valid action ηl by the ǫ-greedy policy
6: Receive reward rl and next state σl+1

7: Add (σl, ηl, rl, σl+1) to D, drop oldest tuple if |D| > Nr

8: Uniformly sample Nb tuples (σ, η, r, σ′) ∈ D
9: for each sample (σ, η, r, σ′) do

10: if σ′ is terminal then
11: Y = r
12: else
13: ηmax = argmaxη′Q(σ′, η′; θ)

14: Y = r + γQ(σ′, ηmax; θ
−)

15: end if
16: Update θ using gradient of loss ||Y −Q(σ, η; θ)||2

17: end for
18: Replace target parameters θ− ← θ every N− steps
19: end for

20: end for

the training of the RL model. Following the design of Double

DQN in [14], we use the trained RL network with parameter θ

to find a desired action (line 13), and then use a target network

with parameter θ′ to evaluate the expected reward of this action

(line 14). According to [14], such an approach can address the

overoptimism problem associated with a commonly used DQN

design, in which the target network is used to find an action

and estimate the reward. Finally, in our algorithm, the action

mask is applied in line 5 to explore a valid action.

V. PERFORMANCE EVALUATION

We conduct experiments based on the settings of the Apollo

ADS and evaluate the performance of different schedulers

from the following perspectives. Firstly, given a small T , we

present the optimal scheduling of ILP-AoI, ILP-Throughput,

and ILP-WCRT to demonstrate the tradeoff among AoI,

throughput, and WCRT. Secondly, we compare the perfor-

mance of the proposed RL-based scheduling with the opti-

mal periodic solution obtained from ILP-AoI-II, and optimal

solution obtained from ILP-AoI for a given small T0 to

demonstrate the effectiveness of the proposed RL solution.

Thirdly, we compare the performance of the proposed RL-

based scheduling with two event-driven scheduling approaches

in the Apollo system for a large T .

A. Workloads

The experiments are set according to the workload in

Apollo, such as the algorithm stack, the sensing frequency,

and execution time of each task. Log files are first collected

by a co-simulation experiment using Apollo and LGSVL

simulator [15] on a device officially recommended with Intel®

Core™ i7-9700K 8-core CPU, 64 GB RAM, and GeForce



Task Name
WCET

(ms)

V1: Localization 18.2
V2: Segmentation 49.8
V3: Image Processing 26.3
V4: Image Processing* 24.9
V5: Recognition 8.4
V6: Traffic Light 48.4
V7: Traffic Light* 39.2
V8: Prediction 18.6
V9: Planning 86.4
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Fig. 6: WCRT for tasks in Apollo’s algorithm stack and the

constructed DAG for evaluation.
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Fig. 7: Training of an RL agent with T0 = 2H , P = 4.

RTX 2080 Ti Graphics Card. The ego vehicle is driven

by Apollo from an initial position to the destination in

the scenario simulated by LGSVL. Fig. 6 shows the worst

case execution time (WCET) of different tasks and the DAG

for evaluation experiments which is constructed accordingly.

There are five sensors with sensing frequency 12.5, 10, 15, 15
and 10 Hz respectively, based on which the hyper-period of

the DAG is H = 400 ms. The default resource configuration

on the Apollo ADS is 8 CPU cores.

B. Baselines

The baselines are the classic scheduling and choreography

scheduling proposed in Apollo Cyber RT [16]. Specifically,

the classic scheduling divides the algorithm stack into two

groups, {V1, V2, V5, V8, V9} and {V3, V4, V6, V7}, and assigns

each group to four cores separately. Priorities of tasks in the

first group increase sequentially, and the task with the highest

priority in the ready task pool is always executed first. Tasks

in the second group have the same priorities and the task with

the earliest ready time is executed first. For the choreography

scheduling, {V3, V4, V6, V7} are assigned to three cores with

equal priorities, and the other tasks are bound to the remaining

cores one-to-one.

C. Implementation of the RL Agent

The setting of the RL agent in Algorithm 1 is as follows.

The RL agent uses a 3 hidden layer neural network with each

width of 128 to approximate the Q-value and uses Adam

optimizer with learning rate 10−5. The hyper parameters

include scale parameter λ = 20, exploration factor ǫ = 0.1,

replay buffer capacity Nr = 20000, training batch Nb = 64,

TABLE III: Comparison of three ILP solvers.

Settings Solver
Throughput

(rounds/s)

WCRT

(ms)

Max AoI

(ms)

P = 3

T = 2H

ILP-Throughput 9.3 333 400

ILP-WCRT 8.4 180 398

ILP-AoI 8.9 191 320

P = 4

T = 2H

ILP-Throughput 10 286 386

ILP-WCRT 8.4 175 396

ILP-AoI 10 175 294

TABLE IV: Comparison of RL and ILP solvers.

Solvers

Max AoI (ms) T0 P=3 P=4

H 2H 3H 4H 5H H 2H 3H 4H 5H

ILP-AoI 300 320 294 294

ILP-AoI-II 362 362 362 294

RL 362 362 362 342 342 362 300 294 294 294

and update frequency N− = 500. We conduct our algorithm

with the same network structure under different settings of P

where 3 ≤ P ≤ 8. Fig. 7 shows an instance of the training

process. The blue solid curves in Fig. 7(a) and Fig. 7(b) depict

the accumulated reward and the maximum AoI observed in

each episode during training the Double DQN model with

P = 4 and T0 = 2H . We also explore the performance of the

DQN model for the same setting, and the performance of both

Double DQN and DQN models without adopting action mask.

The result shows that the agent learns better strategies more

steadily and quickly using Double DQN with action mask,

which reaches nearly optimal at around 50000 steps.

D. Experimental Results

To demonstrate the tradeoff among three different perfor-

mance metrics, i.e., AoI, throughput, and WCRT, we first

compare the optimal scheduling obtained by ILP-AoI, ILP-

Throughput, and ILP-WCRT. We conduct two experiments

with setting P = 3, T = 2H and P = 4, T = 2H
respectively. Results in Table III show that, when throughput

and WCRT are optimized separately by ILP-Throughput and

ILP-WCRT, the performance in the other two performance

metrics is poor, while for the schedule in ILP-AoI, both the

throughput and WCRT are nearly optimal when P = 3.

When P = 4, the solution obtained through ILP-AoI achieves

the optimal solution in all three performance metrics. This

confirms our analysis in Section II that optimizing AoI is

equivalent to jointly optimizing throughput and response time.

To demonstrate the performance of the RL-based AoI-

centric scheduling, we compare it with the schedule obtained

by ILP-AoI and the schedule obtained by ILP-AoI-II under

P = 3 and P = 4. The scheduling solutions for T0 = H

and T0 = 2H are derived for ILP-AoI, ILP-AoI-II, and RL.

For T0 > 2H , the problem size is too large for ILP-AoI

and ILP-AoI-II, while our RL-based method can still solve

the problem. We note that the solution obtained by ILP-AoI

when T = 2H is a lower bound of the problem for T > 2H .

Thus, we compare the RL-based solution with the optimal

periodic solution obtained from ILP-AoI-II for T0 = H and

T0 = 2H . When T0 > 2H , we compare the RL-based solution

with the lower bound obtained by ILP-AoI when T0 = 2H . As
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Fig. 8: Compare RL when T0 = 2H with Apollo’s baseline

schedulers: classic (Apollo-I) and choreography (Apollo-II).

TABLE V: The number of task executions.

Schedule Configuration The number of task executions

Apollo-I P = 4
V1:1250, V6:1369, V9:999

V2V5V8:1000,V3V4V7:1493

Apollo-II P = 4

V1:1215, V2:1002, V3:1363

V4:879, V5:967, V6:743

V7:712, V8:967, V9:965

RL P = 4, T0 = 2H V1V2:999, others:998

shown in Table IV, when P = 3, the maximum AoI achieved

in the RL-based solution is the same to that in ILP-AoI-II

for T0 = 2H . The maximum AoI achieved in the RL-based

solution for T0 = 5H is very close to the lower bound of the

problem. When P = 4, the RL-based solution for T0 > 2H
can achieve the lower bound of the problem. This demonstrates

the effectiveness of the RL-based method.

We compare our RL-based AoI-centric task scheduling with

two baselines in Apollo. We set the schedule configuration

according to the same principle in Apollo for 3 ≤ P ≤ 8.

Specifically, for the classic schedule, cores are allocated evenly

to two task groups. When the number of cores is odd, the group

with more tasks will get one more core. For the choreography

schedule, starting from 7, every time when P is decreased by

one, the task with the smallest index is unbound from a core.

As shown in Fig. 8 (a), the AoI performance of the RL-based

AoI-centric scheduling with 4 cores is even better than the

two baselines with 8 cores. Fig. 8 (b) and (c) show that the

throughput and WCRT in RL-based AoI-centric scheduling are

better than that in two baselines for P ≥ 5.

To have a closer look at the difference between baselines

and our AoI-centric schedule, Table V shows the number

of task executions during 100 seconds. Since the slowest

sensing frequency is 10 Hz, the motion planning task can be

executed at most 1000 times in 100 seconds. Our experiments

observe that the number of executions for the motion planning

task in our method and two baselines is 998, 999, and 965

respectively. However, compared with our RL-based schedul-

ing, many unnecessary executions are performed in Apollo’s

default schedulers. For example, V1, V3, V4, V6, V7 are

executed more often than necessary in Apollo-I, which leads

to a waste of computing resource. moreover, serious resource

competition may happen under some scheduling configuration,

for example, the number of task executions in Apollo-II is

unbalance which leads to a poor performance on AoI.

VI. RELATED WORK

In this section, we discuss the most relevant works in real-

time task scheduling from the perspectives of DAG-aware

scheduling and AoI-based scheduling.

The real-time scheduling of inter-dependent tasks repre-

sented as a DAG with precedence constraints on multiple

processors has been studied for years, with general objectives

of minimizing the makespan of the schedule or meeting the

deadline of job completion time [3], [4]. A branch scheduling

is proposed in [17] which improves the classical critical path

method for DAG scheduling in modern distributed systems.

Considering both task dependencies and heterogeneous re-

source demands at the same time, [18] proposes a scheduler

based on DRL and Monte Carlo Tree Search for complex jobs.

In autonomous driving systems, the work in [19] designs the

scheduler using Kalray MPPA-256 as the many-core processor

with consideration of asynchronous sensing periods among

sensors. A heuristic scheduling algorithm is designed in [20]

based on list scheduling to process streamed data from onboard

and external sensors such as V2V efficiently.

AoI-based scheduling generally aims to minimize the av-

erage and peak AoI in queueing systems. The scheduling

policies proposed in the existing works are constraint-specific

with different considerations, e.g., active and buffered sources

in source-destination communication links [21], deadline con-

strained real-time traffic in an ad hoc wireless network [22].

The work in [23] considers the random status updates arrival at

a source node while the work in [24] takes AoI requirement at

each source node into consideration. Considering the general

and heterogeneous sampling behaviors, varying sample size,

and multiple data transmission units, the work in [25] develops

a near-optimal low-complexity scheduling algorithm. Though

AoI has been proposed in vehicular networks [26] to avoid

collisions, no existing work has applied AoI-based scheduling

in autonomous driving systems due to the challenge of inter-

dependent tasks.

VII. CONCLUSION

In this paper, we proposed an AoI-centric task scheduling

for autonomous driving systems to minimize the maximum

age of information of the algorithm stack represented by a

DAG. We first introduced the AoI as a performance metric

for task scheduling in autonomous driving, and formulated the

AoI-centric scheduling problem as an ILP. Considering that

it is hard to predict the length of a scheduling horizon, we

extended the formulation and re-formulated the optimal AoI-

centric periodic scheduling problem. With the knowledge from

the AoI-centric periodic scheduling, we developed an RL-

based periodic AoI-centric scheduling. Experiments designed

according to the Apollo driving system show that the RL-based

AoI-centric periodic scheduling can achieve near-optimal solu-

tion and outperform the default schedulers in Apollo from the

perspectives of AoI, throughput, and the worst case response

time. In the future work, we will take the tasks’ execution time

dynamics into consideration and study the driving scenario

specific schedule with low AoI and high utilization of the

cores.
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